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NOTES ON PSEUDO-RECTANGLES
J. ALLARD, University of Sherbrooke, Canada

A brief survey of geometry texts and scientific dictionaries shows that paral-
lels can have many definitions that are more or less equivalent. Some definitions
are simple like: “Two straight lines which lie in a plane but do not meet are
parallel.” Concentric circles are parallel; to apply the above definition, the cir-
cles must be visualized as an infinite number of infinitely small straight lines
that are parallel to each other. A definition that was popular a 100 years ago is:
“A curve obtained by measuring from a conic on each normal a constant dis-
tance is a parallel.” In a recent book on curves we find: “While every curve has
but one evolute, it has many involutes; for, the initial point, where the involute
cuts the -original curve, may be chosen arbitrarily. The various curves so ob-
tained are called parallel curves.” This definition is a rigorous way of saying
that two curves or lines are parallel if they have the same slope.

Parametric equations of parallels to pseudo-rectangles can be obtained with
the method of envelopes applied to the equation

® GRS

which yields the circle, the square [1], the ellipse, and the rectangle as particular
cases. When a1=a, a,=0, x1=x, x;=7y we have

@ [QIRIGIEE

o and b being semi-major and semi-minor axes and # a parameter. It can be
shown from elementary calculus that the area 4 of these pseudo-rectangles is

) _ 4ab{T(/20 + 1)}*

T(1/n+ 1)

n— w0

FiG. 1.

Let Fig. 1 represent the first quadrant of

(OT+G)T-

61
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When #—0 the locus of (2) tends to a “rectangular” hypocycloid with a null
area; when n=1% a 2a by 2b rhombus is obtained; when #=1 an ellipse is ob-
tained; and when 1 <z < o, “elliptic type curves” [2] or higher plane curves are
obtained which I call pseudo-rectangular curves, because when n—« a geo-
metrical rectangle is obtained.

F1aG. 2.

Let us consider a family of circles of constant radius r with their centers
lying on the locus of (2) as shown in Fig. 2. The two loci of the end points of all
normals to (2) of length 7 are called the envelopes of the family of circles and
are parallel to (2) according to our definition of a parallel curve.

Let the equation of the family of circles be

4 F—a+ -0 =r,

and the equation of the basic pseudo-rectangle be

(&) -

From the method of envelopes the parametric equations of the envelope or
parallel curve are of the form

(6) X = x(a) a, b, ')) y= y(ﬂ7 a, b, f’),

where @ and b are kept constant for a particular family of pseudo-rectangles and
r may have a maximum value. When we use (5), equation (4) becomes

) (x — a)? + {y - 5[1 - <%>2":|m”}2 —r=o.

Differentiating (7) partially with respect to a, we obtain

rb
P a2n—1(02n — a2n)1/2n—l
(8) r— o= i b2 172 ’
—_ yAn—=2(p2n . ,2n)1/n—2
I:l—l—aga" (a2 a)":l
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which can be written more conveniently in the form

B 2n—1
9) r=a+ e ;
[a”(a"” - a2n)2—-1/n + b2a4n-—2]1/2

by a similar method, the y coordinate of the parallel is

’aﬁ2n—1

[bz(bz" — BZn)Z-—l/n + azﬁm—-z]l/z ’

(10) y=8=

where 8 and « are related by (5).

Particular cases of interest are:

1. When n=1 the “elliptic race track” problem is obtained and the para-
metric formula for x on the inner boundary of the elliptic race track is:

5 5
(11) x=a[1— " ]=a[1————i;~——}
(a4 - a2a2 + bza2)ll2 (a4 — a2a282)1/2

where
b2 1/2
e = (1 - —) .
az

A mechanical method can be also used to plot these parallels to ellipses [3].

2. When n—», a geometrical rectangle is approached and a—a, or 8—b,
which reduces formula (9) to x=a +r.

3. When n=1% a family of rhombuses is obtained and their parametric equa-
tions are

(12) pmat— T,
(02 + b2)1/2
(13) y=p+——

(a2 + bZ)lIZ ’
Using the fact that [(a/a)2]'/2+[(8/b)2]/2=1 we get
(14) b2 4 a(y?)? F r(b* + )2 — ab = 0,

an equation for a family of rhombuses.

In the above examples there is a maximum value that » can take when the
minus signs are used in (12) and (13). That is, r cannot exceed the minimum
radius of curvature of the pseudo-rectangle. By elementary calculus, it can be
shown that the radius of curvature R of (2) is

[azbm—z(azn — x2n)2—1ln + b4nx4n—2]3/2

(2” — 1)a2n+2b6n—2x2n—2(a2n —_— x2n) (n—1)/n

(15) R =
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For an extremum we have dR/dx=0; this leads to the formula for the value
x’ of x for which the extremum is obtained.

Substituting this value of x’ in (15), we obtain the minimum radius of curva-
ture of the pseudo-rectangle.

These higher plane curves have other interesting properties and uses [4, 5, 6].
Pseudo-rectangles sometimes called storoids were popular topics at the end of
the 19th century and they were treated by Lamé, Dirichlet and Minkowski.
Today, analytic geometry texts seldom discuss these curves. In a few applied
mathematics texts, they are briefly treated as a by-product of Dirichlet’s
multiple integrals.

References

1. J. Allard, Notes on squares and cubes, this MAGAZINE, 37 (1964) 210-214.

2. W. J. Worley and F. D. Breuer, Elliptic-type closed curves, Product Engineering, August,
1957,

3. R. C. Yates, A linkage for describing curves parallel to the ellipse, Amer. Math. Monthly,
45 (1938) 607.

4. S. Higuchi, On some closed algebraic curves and their application to dynamical problems,
part I, Philosophical Magazine, No. 7, 9 (1930).

5. J. Allard, The equation of a square in heat transfer, International Journal of Heat and
Mass Transfer, No. 5, 7 (1964).

6. , Remarks on the physical possibilities of the square when visualized as a curvilinear
curve, Amer. J. Phys., No. 11, 30 (1962).

USING ‘“CROSS PRCDUCTS” TO DERIVE CRAMER'’S RULE
DONALD R. BARR, Colorado State University

Introduction. Frequently in mathematics one encounters situations in which
two different theorems or techniques can be used to solve a certain class of
problems. When this happens, we are tempted to ask whether these theorems
have a connection stronger than that of being applicable to a common class of
problems. In fact, we might wonder if it is possible to prove one theorem from

the other through this class of problems.
An example leading to such a proof is given in what follows. The problem is

that of finding the equation of a plane, given three of its points.
The cartesian equation of a plane in E? (three-dimensional Euclidean space)

can be put in the form
M ax + By + vz =1,

where o, 8, and v are real numbers. The plane is determined by three non-
collinear points (%1, 31, 21), (%2, V2, 22), (%3, ¥3, 23) in it. Given these points, then,
we are able to determine the coefficients in equation (1) in the following two
ways:
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A. Algebraic Approach. Since the three points must satisfy equation (1), we
have a system of three linear equations in the unknowns «, 8, and . This system
can be written

) AcT = 17

where A is a matrix whose ¢-th row is composed of the coordinates of the 7-th
given point, ¢= (e, 3, v),.1=(1, 1, 1), and the “T” indicates “transpose.” Of
course, this system can be solved using Cramer’s Rule.

G. Geometric Approach. A vector normal to the plane can be obtained by
taking the cross product (also called the vector product or outer product) of
two nonzero, nonparallel vectors u and v in the plane. Since the coefficient vec-
tor ¢ is also normal to the plane, it follows that uXv=NX\c, where \ is a real num-
ber. Knowing Ac, we can easily obtain the coefficients in equation (1).

The observation that (A) and (G) both lead to the solution of equation (2)
suggests the possibility of proving Cramer’s Rule using cross products. (Note
that any system of three nonhomogeneous linear equations in three unknowns
may be put in the form of equation (2).)

Case for E3. Suppose (x1, ¥1, 21) , (%2, V2, 22), and (s, ¥s, 23) are three noncollinear
points on a plane whose equation is given by (1). We seek the solution to the
system (2). The vectors u=(x2—x1)i+@2—y1)j+(z22—2)k and v=(x3—x)i
+(93—91)j+ (23— z1)k are in the plane, where i, j, and k are the usual orthogonal
unit basis vectors for E2 Thus, using the usual determinant expansion for cross
products, we have that

i j k
3) uXv=Ai+MNj+Mk=|a—%1 22—y 22—un
X3— %1 Ys— Y1 23— 21
is a vector normal to the plane.

Multiplying equation (1) through by N and equating multiples of i, j, k in
equation (3), we have

4) [(yz—yl) (33— 21) — (y5— 1) (zz-—zl)]x—l- [(xg—xl) (22— 321) — (w2 — 1) (23—21)])’

( + [(#2— 1) (93— y1) — (®a— 21) (y2— 1) [2=],

where A is obtained by letting x=x;, y =41, and 2=3, in equation (4). It is easily
verified by expanding the respective determinants that equation (4) may be
written as

®) | s]2+ | Aaly+ | ds] 2= | 4],

where [A ,-| is the same as [A| except that the j-th column has been replaced
by a column of ones.

Comparing equations (1) and (5) we have a=|A1|/|Al if IA, #0, with
similar expressions for 8 and . This is, of course, Cramer’s Rule for the system
(2). A geometrical condition on the plane which insures that system (2) is non-
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homogeneous and has nonzero coefficient determinant is that it does not contain
the origin; i.e., it has nonzero intercepts.

Special case for E2 and generalizations. The argument used above is easily
specialized to E? and generalized to higher dimensional spaces, provided that we
merely replace the cross product arising in E? by a determinant of appropriate
order. These cases are also interesting in that they point out a “cross product”
technique of finding a vector in E» normal to a given »—1 flat. One can easily
prove this normality using the fact that determinants with one or more repeated
rows are zero. It is also easy to show that the geometrical condition on the flat
insuring the existence of the nonhomogeneous system and nonzero coefficient
determinant remains the same under change in dimensionality of the space
considered.

TANNERY’S THEOREM

R. P. Boas, Jr., Northwestern University

The title of this note is presumably as unfamiliar to most American mathe-
maticians as it was to me when I encountered it recently. Tannery’s theorem
for series ([1], p. 123; [2], p. 136) deals with limits such as lim, .., (14x/#)" and

([4], p. 467)
m{G) () (0

and even with a derivation of the power series for the sine and cosine without
using Taylor’s formula. It says that if fi(n)—L; for each %, as n— o, and if
lfk(n)l < My with Y M; convergent then

Fuln) - falm) + - -+ F foln) — Z Lo

provided that p— o as n— . Bromwich remarks ([2], p. 136), “. .. the test
for the theorem is substantially the same as the M-test due to Weierstrass . . . .
The proof, too, is almost the same.” It is a good test of a student’s grasp of uni-
form convergence to ask him to verify that the analogy here is extremely close:
the theorem is a special case of the M-test. (Cf. [3], p. 122.)

There are similar theorems for infinite products and for improper integrals.

References

1. P. L. Bhatnagar and C. N. Srinivasiengar, The theory of infinite series, National Publish-
ing House, Delhi, 1964.

2. T. J. I’A. Bromwich, An introduction to the theory of infinite series, 2d ed., Macmillan,
London, 1926.

3. E. W. Hobson, The theory of functions of a real variable and the theory of Fourier’s series,
2d ed., vol. 2, Cambridge, 1926.

4. C. A. Stewart, Advanced calculus, 3d ed., Methuen, London, 1951,


http://www.jstor.org/page/info/about/policies/terms.jsp

66 MATHEMATICS MAGAZINE [Mar.—-Apr.

homogeneous and has nonzero coefficient determinant is that it does not contain
the origin; i.e., it has nonzero intercepts.

Special case for E2 and generalizations. The argument used above is easily
specialized to E? and generalized to higher dimensional spaces, provided that we
merely replace the cross product arising in E? by a determinant of appropriate
order. These cases are also interesting in that they point out a “cross product”
technique of finding a vector in E» normal to a given »—1 flat. One can easily
prove this normality using the fact that determinants with one or more repeated
rows are zero. It is also easy to show that the geometrical condition on the flat
insuring the existence of the nonhomogeneous system and nonzero coefficient
determinant remains the same under change in dimensionality of the space
considered.

TANNERY’S THEOREM

R. P. Boas, Jr., Northwestern University

The title of this note is presumably as unfamiliar to most American mathe-
maticians as it was to me when I encountered it recently. Tannery’s theorem
for series ([1], p. 123; [2], p. 136) deals with limits such as lim, .., (1+x/7)" and

([4], p. 467)
m{G) () (0

and even with a derivation of the power series for the sine and cosine without
using Taylor’'s formula. It says that if fi(#)—Ly for each k, as n— 0, and if
|fi(n)| < M with DM, convergent then

Fuln) - falm) + - -+ F foln) — Z Lo

provided that p— o as #— . Bromwich remarks ([2], p. 136), . .. the test
for the theorem is substantially the same as the M-test due to Weierstrass . . . .
The proof, too, is almost the same.” It is a good test of a student’s grasp of uni-
form convergence to ask him to verify that the analogy here is extremely close:
the theorem is a special case of the M-test. (Cf. [3], p. 122.)

There are similar theorems for infinite products and for improper integrals.

References

1. P. L. Bhatnagar and C. N. Srinivasiengar, The theory of infinite series, National Publish-
ing House, Delhi, 1964.

2. T. J. ’A. Bromwich, An introduction to the theory of infinite series, 2d ed., Macmillan,
London, 1926.

3. E. W. Hobson, The theory of functions of a real variable and the theory of Fourier’s series,
2d ed., vol. 2, Cambridge, 1926.

4. C. A. Stewart, Advanced calculus, 3d ed., Methuen, London, 1951,


http://www.jstor.org/page/info/about/policies/terms.jsp

THE THREE FACTORY PROBLEM

IRWIN GREENBERG, New York University and RAYMOND A. ROBERTELLO,
Fairleigh-Dickinson University

The problem. The three factory problem can be stated as follows: a company
has three factories, U, V, and W, which must receive some commodity in lots
of #, v, and w respectively, each receiving period. The factories are to be sup-
plied from a single warehouse. Assuming that shipping costs are proportional to
the product of quantity shipped and distance, where should the warehouse be
located so that the sum of the shipping costs is minimized? Mathematically,
the problem is to find the point Z such that (see Figure 1)

uUZ + vVZ + wWZ = minimum, where u, v, w > 0.

w

F1G. 1. The three factory problem.

The solution. Case 1. U, V, and W are collinear, with V between U and W.
In this case the solution always lies at V unless either #>94w (in which case
U is the solution) or w>v-+u (in which case W is the solution).

If w=v-w, all points in the closed interval [U, V] are solutions. If w=0v+u,
then all points in [V, W] are solutions.

Case 2. U, V, and W form a triangle. In this case the solution lies either
within the triangle or at the factory which receives the largest shipment. If Z
lies within the triangle UV W, then the situation is shown in Figure 1. The inte-
rior angles of the triangle are all less than 7 and they sum to 2. Thus, at least
two of the central angles will be obtuse. One of these, 8, can be written in the
form

™ ™
) ﬂ=3—+a, 0<a<?:
where
u2+v2—w2
2uv .

67

2) sin ¢ =
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The condition 0<a<w/2 implies 0<sin @ <1, which implies that |u—v| <.
This and the corresponding constraints derived from the other two interior
angles lead to the requirements

3) u <o+ w; v < u+ w; w < u -+ v

If the quantity required at any factory is greater than the sum of the quantities
required at the other two, then the warehouse should be located at the factory
with the largest requirement.

The other requirement for Z to lie in the triangle is that 8 be greater than
the angle at W. If this conditien is not met, then the solution will lie at point W.
(Since the labelling of U, V, and W is arbitrary, the same restriction applies to
U and V and their corresponding interior angles.) A necessary but not sufficient
condition for this to occur is w = max(u, v).

When Z lies in the triangle, its location can be determined by specifying the
angles @ and v, both of which are acute:

R
WV (cos a) sin I:a + ¢+ 2 tan™? <§:—W—I—J>]

@ tan @ = 2
—V - W 2 tan™! ——-*—__)]
cos ¢ (cos a) cos [a + ¢+ 2tan (S %7
& Y= %’ —a—a

where @ is defined by equation (2), and ¢, S, and R are defined by

w2+v2._.u2

(6) sin ¢ = ————,
2wy
M S =3TV+WV+ WD),
(S =TS — WV)(S — WD)
® x- ; I

If #=v=w and the solution does not lie in the triangle, it lies at the vertex of
the triangle with the largest angle. If #=9>w and the solution is not in the
triangle, it is at point U or V, whichever has the larger angle.

Discussion. The derivation of the solutions which can be accomplished using
only trigonometry and analytic geometry, is quite long and tedious but involves
generally well-known principles. For these reasons, the derivation will not be
presented in its entirety, but merely outlined. It is anticipated that the inter-
ested reader can easily fill in the missing steps, should he so desire.

Case 1. The solution can be verified by moving a distance § away from the
indicated optimum and comparing the total costs. For example, assume that
v>u-+w. The solution lies at the point V and the total cost is « UV +w VW.
Moving a distance § > 0 towards U gives a total cost of w(UV — 8) + vd
+w(VW +38). Now
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w(TV — 8) + v6 + w(VW + 8) = uUV + 6(v + w — u) + wVW.

Since v>wu+w implies v+w>u, then the new cost is larger than the original.
The same argument holds for moving a distance 8 toward W. Thus V gives the
lowest cost.

The same kind of argument can be used to verify the solutions for any other
relations between #, v, and w.

Case 2. Consider the locus of all points P such that

9 ury + vry = constant,

where 7y is the distance from the P to U and ry is the distance from P to V.
This locus is an oval of Descartes (also called a cartesian oval). Actually, the
oval of Descartes consists of two ovals and is the locus of all points P such that

+ wury + vry = constant.

The inner oval is the locus of (9); its equation, in polar coordinates with the
origin at U, can be written
ku — 02TV cos 0 — v/ k2 + (TV)2u2 — 2kUVu cos § — v2(TV)? sin? 4}

r = )
u? — o2

where k is the constant of equation (9).

If the negative sign before the radical is replaced by a plus, the outer oval is
obtained. The inner oval has no multiple points. For a full discussion of the
properties of these ovals see H. Hilton, Plane Algebraic Curves, Oxford Univer-
sity Press, 1920, page 319.

In particular, consider the locus which passes through the solution point Z,
i.e., the constant is # UZ-v VZ. It is clear that the point W must lie either on
this oval or outside it. This can be seen by assuming that the locus encloses W,
and then considering the cartesian oval which passes through W. Since this
latter curve is contained within the former, choosing the point W gives a
smaller value for the sum of the weighted distances to U and V as well as setting
the shipping cost to W equal to zero. Thus, W cannot be inside the locus for U
and V which passes through the optimum. Assume that W does not lie on the
locus. Then the solution, Z, is the point on the curve closest to W; that is, since
there are no multiple points, where the tangent to the curve is perpendicular
to the line drawn from that point to W.

Applying the same arguments to the loci for U and W and for V and W, one
obtains the situation shown in Figure 2, where Tyy is tangent to the cartesian
oval for U and V and is perpendicular to WZ; Tyw is tangent to the cartesian
oval for V and W and is perpendicular to UZ; and Tyw is tangent to the car-
tesian oval for U and W and is perpendicular to VZ. From elementary trigo-
nometric considerations, it can be seen that

(10) 6, = ¢y = g, ®y = 0, = b, Vi=%=¢ and ¢+ b+ c=x/2.

Assuming that each locus can be expressed in terms of arc length, ¢ (a param-
eter), then at any point along the locus for U and V we can make the classical
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assumption that the ratio of a small chord to its arc is very nearly equal to unity
and that the limit approaches one as the arc length approaches zero. This
leads to

—dry dry

) cos $ = —,
dt

11 cos &y =

the usual representation of an angle between a tangent and an axis in terms of
derivatives with respect to arc length.

Tyw

F16. 2. Trigonometry of the three factory problem.

If equation (9) is differentiated with respect to ¢, and equations (10) and
(11) introduced into the result; and if the procedure is repeated for the other
two ovals, one eventually obtains equation (2) for sin @, equation (6) for sin c,
and

2 2 2
(12) sinb:f‘_i.zf’___”_.

Zulw
Equation (1) can be obtained from equation (10) and Figure 2; notice that
B=0+0+¢yi+vs=2a+b+c=a+ 7/2.

Equations (4) and (5) can be derived as follows: referring to Figure 1, apply the
law of sines to triangles VWZ and UVZ. Solve the first expression for VZ in
terms of VW and the appropriate angles and solve the second for 7Z in terms of
UV and the angles. Equating the two yields an expression involving «, 8, UV,
VW, \, and u. Now X can be shown to equal 7 +c¢ in the same manner as equa-
tion (1) was proved. Also, u can be eliminated by making use of the fact that
the angles of triangles UVZ and VWZ must each add to m, and of the relation-
ship

vy+rv= Ztan—l[m].
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After some tedious manipulation, equation (4) is obtained, and then equa-
tion (5).

Thus, if the solution does not lie at a vertex, its location can be determined
from (4) and (5).

The derivation of (4) and (5) tacitly assumes that Z lies in the triangle
UVW. To show that it cannot lie outside the triangle one can construct a per-
pendicular from any point outside the triangle to the nearest side and show that
at the intersection, the total cost of shipping is lower than the cost of shipping
from the exterior point. (If the intersection of the perpendicular and the side
lies outside the triangle along the extension of the side, one should move to the
nearest vertex to demonstrate that the cost of shipping is lower.) One can also
show that if the solution lies on a side of the triangle, it must lie at a vertex.
This follows from the following argument: Assume Z lies along one of the sides,
say UV. Then the locus of equation (9) passes through Z and is symmetric
about UV. If # and v are unequal, then the tangent to the curve at Z is per-
pendicular to UV. Since WZ must be perpendicular to the tangent, then U, V,
and W must be collinear. Thus, for U, V, and W not collinear and u v, the
solution cannot be along UV. If, however, v># and the constant in equation
(9) is # TV, then the locus such that ury-+ovry=u TV is just the point V and
WYV is the unique (and hence, minimum) distance from W to this locus. Thus
we have shown that if #, v, and w are all different, the optimum solution lies
either at a vertex or in the interior of the triangle.

W

0.

U x VA 1—x v

F16. 3. # and v equal.

If # and v are equal, then the locus of equation (9) could be the straight line
UV and the above argument cannot be used. Instead, the proof can be obtained
from Figure 3. If the solution lies along UV, it is at the intersection of UV and
the perpendicular from W. Let the length of this perpendicular be v and let the
distance UV =1; the intersection occurs a distance x from U. It can be shown
that there exists at least one point along WZ which gives a smaller total cost;
this point is located a distance § above UV. The cost is

un/ (2 + 8% + u/((1 — x) 4 62 + w(y — 9).


http://www.jstor.org/page/info/about/policies/terms.jsp

72 MATHEMATICS MAGAZINE [Mar.—Apr.

The value of 8 which minimizes the cost is obtained by differentiating with re-
spect to & and equating to zero, which yields

0 [ ! - ! ] 0
7 —w=0.
V@) A -arto] ”

Clearly, §=0 cannot be a solution, but 8 arbitrarily small (but positive) makes
the derivative negative. Thus, increasing 8 from zero by this small amount de-
creases the cost; hence, the optimum cannot occur along UT.

Thus far, we have shown that the solution must lie inside the triangle or
at a vertex, and if it is at a vertex, it is the vertex receiving the maximum ship-
ment, assuming that this maximum is unique. In the case of all factories receiv-
ing the same shipment (¥ =v=w) then ¢ =b=c¢=230° and a=8=v=120°. If one
of the angles of the triangle is greater than 120°, the solution will lie at the ver-
tex of that angle. In the case #=v>w and the solution does not fall in the tri-
angle, it is at U or V, whichever has the largest angle. These solutions can be
verified by determining the total cost of shipping from each vertex and choosing
the one which yields the minimum cost.

NEW EXPERIMENTAL RESULTS ON THE
GOLDBACH CONJECTURE

M. L. STEIN anxp P. R. STEIN, Los Alamos Scientific Laboratory

1. Introduction. Goldbach’s famous conjecture—that every even number
can be represented in at least one way as the sum of two primes—is now 222
years old and remains unproved despite overwhelming evidence for its truth.
The most important advance in this century was provided by the work of
I. Vinogradov [1], who showed that all odd numbers greater than some un-
specified (large) integer can be expressed as the sum of three primes. If Gold-
bach’s conjecture were proved, Vinogradov’s result would follow trivially, but
nothing can be proved about the former by assuming the latter.

In view of the failure of analytic methods to decide the problem, we thought
it might be helpful to undertake a detailed experimental study of the so-called
Goldbach curve—that is, the number of distinct solutions »,, of the equation
2n=p;+p;—in the hope of turning up some new facts which might suggest a
fresh approach to the central problem. Whether or not we have been successful
in this remains to be seen. In any event, our work has led to three new conjec-
tures and to a heuristic understanding of the actual Goldbach curve, at least
in the finite interval 2% <150,000. These matters are discussed in the next four
sections.

The analogue of Goldbach’s conjecture for primes—hereafter referred to as
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G(P)—can also be made for other “sieve” numbers. In particular, it appears
to hold for the “lucky numbers” first defined by S. Ulam [2]. Further, the three
conjectures described below can also be plausibly put forward in the “lucky”
case. A brief description of the results for lucky numbers is given in Section 6.

2. The first conjecture. The raw data for this investigation is a table of the
number of “Goldbach decompositions” vy, for all even numbers in the range
21 < 150,000. (Since this article was written this table and the corresponding
one for lucky numbers have been published as a Los Alamos report LA 3106,
Vol. I and II. The range of these tables is 2% <200,000.) This table was calcu-
lated on the Laboratory’s MANIAC II electronic computer. It has been care-
fully checked, both by repetition and by numerous independent “spot-checks”
for selected values of 2% [4].

The first conjecture to be based on this data is as follows.

ConJecTURE I (P). For every integer k>0 there exists at least one even number
2n such that ve.=k.

This conjecture—which was made in the early stages of the calculation—
now appears quite solid. It is true for all 2=1911. The first gap is at k=1912;
the next few gaps occur for k=1942, 2078, 2113, 2140. (After this, the gaps
become fairly frequent.) On the basis of experience, we should expect that at
least one solution of vz, =1912 would be found by extending our table up to
21 <160,000. The largest value of »s, found in our range is 2969, which occurs
for 2n=143,220.

It is not at all obvious that this conjecture is dependent on the truth of
G(P); its precise status with regard to the latter remains to be investigated.
Experimentally, the number of solutions of the equation v, =% for given k is
quite respectable. To date we have not looked at this new curve in detail.

3. The second conjecture. The next conjecture suggested by our data may
be stated as follows.

CoNjeECTURE II(P). For every integer k> 8, the smallest solution 2n of the
equation ve, =k is such that 2n=0 (mod 6).

In fact, this holds for all £>4 for which any solution has been found so far,
with the exception of £=38. (The first value of 2% for which v, =8 is 140.) The
conjecture is rendered somewhat more plausible than it appears at first sight
by noting that the Goldbach curve “almost always” has a local maximum at
points 2#=0 (mod 6). This in turn is to be expected in view of the fact that
there are—very roughly—twice as many decompositions 6m=p;+p; as there
are 6m +2=p;+p;, since in the first case primes of both parities 65 + 1 are avail-
able. Actually, all even numbers 36 <27 < 150,000 which are divisible by 6 have
more Goldbach decompositions than their immediate neighbors, with two ex-
ceptions: there is one “contact” (viue=vie0=46) and one “crossing” (vsooso
= 1006, Vsgoos2 — 1005)
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4. The structure of the Goldbach curve. The detailed structure of the Gold-
bach curve is very irregular; the magnitude and location of the various maxima
and minima would seem to be quite unpredictable. Nevertheless, it turns out
that a refinement of the crude argument in the previous section (concerning the
local maxima at points 2z=0 (mod 6)) yields a prescription which enables one
to predict the curve in remarkable detail. Using this prescription, we have been
able to fit the entire curve in the range 30,000 =2%<150,000 with an overall
(absolute) error of 2.63%, and a maximum error of 13.749%, (which occurs at
the point 2n =233,038).

Before describing the formula, we remark that it is clear why an even num-
ber whose factorization contains a relatively large number of distinct primes
should have a correspondingly large number of Goldbach decompositions. This
is simply due to the fact that there are fewer composites of the form 2% — p, since
all composites sharing a prime factor of 2% are excluded. Consequently, there
is a correspondingly greater chance that 2#—p is a prime. It is therefore evident
that the actual factor structure of 2z is important in determining the size of
van. Another relevant consideration is the “parity” (or residue class) of 2z modulo
some conveniently chosen integer. (These considerations are, of course, not in-
dependent, but it is convenient to consider them so for our purposes.)

The existence of certain local maxima is “explained” by considering the
even numbers modulo 6. We can get more detailed results by using, say,
30=2-3-5 or even 210=2-3:5.7, etc. This leads us to define the following
quantities.

Let II, be the product of the first 2 primes where we take 2 as the first
prime. Let #, be the number of solutions of

(1) s=r;+ 7r; (mod IIy)

where 7;, 7;, belong to the set of ¢(II;) integers prime to Il and s is an even
number, 0 <5 <II;. For our purposes, we take 7;-+7; and r;-7; as distinct unless
ri=7;j.

Now the possible values of s fall into 2*! residue “types” according to
which primes of the set {2, 3,517 ---, pk} appear as distinct factors of s.
Thus each s is of the form 23«5 . .. prt. R where R does not contain any
of the first & primes as a factor. A residue type is completely defined by specify-
ing which of the a; are nonzero, but is independent of their actual values.

It is easy to see that #, is the same for all s belonging to a given residue type.
We may label the residue types (the order is arbitrary) by the index 7: 1 <1
<2%1 For all s belonging to the residue type 7 we write:

&)
(2) Ny = g .

For example, if =4, the values of g® are as follows (here we specify the
residue type by giving the actual primes that appear):
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TABLE 1

Type (?
2) 15
2, 3) 30
2,5) 20
2,7 14
2, 3,5) 40
2,317 36
2,57 24
2,3,57) 48

It is easy to show that the g® may be calculated by recursion on k:

a. If 7 is a residue type for II; which does not contain the prime pz, then

® £ = (o= g0

b. If 7 does contain the prime ps, then

®) &1
4 g = (b — Dga
where i* is the residue type which results on omitting the prime ;.
As defined above, the g are the numbers of different integers prime to II,

(rather than the number of solutions) which appear as solutions of equation (1).
Thus, for k=3:

s=0: s = 6:
1+ 29 =0 (mod 30) 7+ 29 = 6 (mod 30)
7+ 23 = 0 (mod 30) 134+23=6(mod 30) g=6
11419=0 (mod 30) ° 17 4 19 = 6 (mod 30)
13 + 17 = 0 (mod 30)
s =2 s = 10:
14 1=2 (mod 30) 11 4 29 = 10 (mod 30)
13+ 19 = 2 (mod 30) © 17 4 23 = 10 (mod 30)

From these values of the g®, Table I is easily calculated via equation (3)

and (4).

We are now ready to give our prescription for predicting »;,.. Let 2% have
known factorization 2%pp52 - - -, and let it be of residue type ¢ (mod IIx). Let
P® be the number of primes Z#, excluding 1, 3, 5, - - -, P4, and let P, be the
number of primes between # and 2#. Let D® be the number of integers <#
which are prime to 2, 3, 5, - + -, p» and to any additional prime factors appear-
ing in the factorization of 2un. The “expected” number E,(v) of Goldbach de-
compositions of 2% is then given by the expression:
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k) (k)
gi Pa

® B0 = Sy Do

be

Here the collection of factors multiplying P is essentially an approximate
expression for the probability that 2z —p is a prime, p being a prime of ap-
propriate parity from the upper half of the interval. In this formula, D® is
easily calculated by the well-known “Inclusion-Exclusion” algorithm once the
factorization of 2% is known. The residue type (mod II;) is also determined in
an obvious manner. The calculation of the g® has already been described.
P® P, may, of course, be obtained from a table of primes (or, equally well,
from some analytic approximation, with sufficient accuracy for this purpose).
Thus there are really no empirical constants in the formula.

We have applied this formula to every even number in the range 30,000
=<2#%<150,000 for k=35, i.e., for II;=2-3-5-7-11=2310. For each case we have
calculated the percent error:

(6) € = 100(E2n(1/) - Vgn)/Vzn.

Note that, as defined, E.,(v) is not generally an integer; we have not bothered
to round it off.

€ is positive in the great majority of cases, but for a few even numbers our
formula actually gives an underestimate; in these cases the absolute error is
small. In Table II we list the number of cases for which the absolute error lies
between specified limits.

TasLE II

Absolute 9%, Error Number of Cases Absolute % Error Number of Cases
le] < .05 531 5.00 < || <6.00 2902
.05 || <1.00 9875 6.00<|e| <7.00 1295
1.00= || <2.00 13161 7.00<|¢| <8.00 600
2.00= || <3.00 14179 8.00< |¢| <9.00 235
3.005 |¢] <4.00 10949 9.00 < |e| <10.00 104
4.00< || <5.00 6098 le] >10.00 71

As stated in the Introduction, the maximum error is 13.749%,, and occurs for
2n=233,038; here v=224, E=254.78.

Finally, we have calculated »,, and E,,(v) for three large values well outside
the range of our table (k=5):

TasLE 111
2n Van Esn(v) €
1000000 5402 5533.46 2.43
1000002 8200 8300.07 1.22

1000004 4161 4277.85 2.81
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5. Minimal primes: the third conjecture. In the light of the experimental
evidence, G(P) appears to be a rather modest conjecture. This is illustrated by
Table IV, which gives values of N* and v* such that, if 2#> N*, then vy, >v*.

TaBLE IV
N* V* N* V*
4688 50 63962 400
11672 100 75188 450
19246 150 85616 500
27908 200 95276 550
36242 250 105368 600
45998 300 116618 650
55446 350 126878 700

In other words, all even numbers greater than 85616 have more than 500
Goldbach decompositions, etc. Table 1V is, of course, based on calculations for
the range 2% <150,000, but the general trend of the curve makes it unlikely
that the table will be found incorrect.

All in all, it would appear that the primes form a sequence that is much
denser than is necessary for G(P) to hold. Accordingly, we thought it would be
of interest to construct a subsequence of the primes for which G(P) holds by
construction and to study its density. Naturally, any such sequence will ter-
minate if G(P) is false and may terminate even if G(P) is true.

The sequence we have worked with may be defined recursively in the follow-
ing manner. Let the first m terms of our sequence be { b1, P2y D3y v v v, pm}
=(M). Form all even numbers of the form 2u#=p,+p;, where p,, p;&(M). Let
2n* be the first even number not so expressible. We then choose the largest
prime p <2n* such that p+p;=2n*, p,E(M). We then set pnmi1=p and con-
tinue.

The first few terms of the sequence are: 1, 3, 7, 11, 13, 17, 31, 29, 47, 41, 53,
67, 83,103, 109, 127, 139, 137, 157, 181, - - - . Note that the algorithm does not
produce these primes—we shall call them “minimal primes”—in strictly in-
creasing order; this “backtracking” appears to be an inescapable feature of the
prescription which persists as the sequence is carried to higher values.

The minimal prime sequence has been successfully extended up to 2z
=1,000,000. In this range there are exactly 3,000 terms, the last one being
999,043; this is the 78,437th prime in the natural sequence. From a log-log
plot it appears that

) m~ " (pn) with »220.6 or 0.59,

where p,, is the mth minimal prime (in the natural order) and 7 (x) is, as usual,
the number of primes =<x. On the basis of these results, we are led to make

ConjecTURE 111 (P). The minimal prime sequence is infinite.
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This is a much stronger conjecture than G(P). If it should be proven false,
that is, if the sequence should terminate, we can always insert a new prime pair
and continue (this will be possible if G(P) holds). In our opinion, however, the
conjecture as it stands is not implausible.

It turns out that, in a certain sense, the algorithm is quite efficient. As each
new minimal prime is determined, one of the earlier values appears as a “comple-
ment” 3, i.e., =2n%*—p,1. Up to 22=1,000,000, only 47 minimal primes are
used as complements; this shows that the “backtracking,” while persistent, is
never extreme. (223 of the 3000 minimal primes are generated “out of order”.)
In Table V we list the minimal primes which appear as complements along with
the number of times each prime is so used. In this table, the primes are listed in
their “algorithmic” rather than their natural order.

TABLE V
m Dm frequency m Dm frequency m Dm frequency
1 1 332 17 127 44 33 359 9
2 3 606 19 139 34 34 379 1
3 7 252 18 137 25 35 401 3
4 11 329 20 157 19 36 421 1
5 13 134 21 181 20 37 457 1
6 17 256 22 193 5 38 461 5
8 31 97 24 199 9 40 509 3
7 29 172 23 197 21 41 521 6
10 47 86 25 229 3 43 569 2
9 41 107 26 239 12 45 617 1
11 53 73 27 251 20 47 653 1
12 67 88 28 271 6 50 709 1
13 83 57 29 307 5 53 773 3
14 89 43 30 313 1 51 743 1
15 103 43 31 317 12 71 1319 1
16 109 48 32 349 2

The regular alternation of frequency in the first part of the table is striking,
but we hesitate to suggest at this stage that it is significant.

6. Lucky numbers. The experiments described above may also be carried
out for the case where, instead of prime numbers, we use another sequence of
“sieve” numbers called “lucky numbers” [2]. We recall that, according to the
sieve of Eratosthenes, the primes are determined successively by, at the jth
step, marking every p;th number counting from the jth prime p;. The first
number greater than p; which remains unmarked is the j+1st prime. In count-
ing from the p;th prime, all numbers remain in the list regardless of whether
or not they have previously been marked. In the lucky number sieve, on the
other hand, a number is removed as soon as it has been marked. Thus, having
removed all the even numbers from the list of integers, we find that the first
number >1 which remains is 3. We then strike out every third remaining num-
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ber, counting from the beginning (this is the usual convention). Thus every
number of the form 6k—1 is eliminated. The first remaining number >3 is 7,
so we strike out every 7th number counting from the beginning, etc. The ele-
ments of the resulting infinite sequence are called lucky numbers. It has been
shown [3] that these numbers have, to lowest order, the same asymptotic den-
sity as the primes.

In contrast to the prime case, there is a convenient algorithm for calculating
the kth lucky number directly in terms of the luckies =<k. Since this may not
be well known, we give it here.

Let l,,—1 be the greatest lucky =k. Set R, =k. Then define:

R,
(8a) j= [-—l—————I-:I if l,,—1 — 1 does not divide R,
m—1 "
Rn . .
(8b) ji= [————-—-] —1 ifly,1— 1divides R,
Iy — 1
& Ru-1= Rn+ 3.
We continue the process down to m =2. Then, finally:
(10) l], = 2R2 — 1.

This algorithm—which follows directly from the definition of the lucky sieve
—is extremely useful in checking the table of luckies; the latter, of course, is
best calculated by carrying out the sieve process as originally defined. Using
MANIACII, we have computed (and checked) a table of the first 36,655 luckies.

In the original paper [2] it was more or less implied that the lucky number
analogue of Goldbach’s conjecture—call it G(L)—holds, i.e., that every even
number has at least one decomposition into two luckies. In fact, the authors of
[2] verified this property for the range 2% =<100,000. In parallel with our work
on the Goldbach curve for primes, we also calculated a table of the number Ay,
of solutions of the equation 2n=1;4-1;, where [,, [; are luckies. This was done over
the same range, 2% <150,000. The resulting curve is, in its gross aspects, quite
similar to the usual Goldbach curve. The local maxima, however, now occur at
values 27z =6k —2. This is to be expected, since there are no luckies of the form
6k—1. (There are no “crossings” (in the sense of Section 2) and one “contact”:
Moo =N192=17.)

The conjectures analogous to those made above for primes can equally well
be made for this case:

ConNJECTURE I (L). For every tnieger k>0 there exists at least one even number
2n such that Non=Fk. This has been verified for all k <17609.

ConNJECTURE II (L). For every integer k> 1, the smallest solution 2n of Nen=F
is such that 2n= —2 (mod 6). This holds without exception for all k for which any
solution has been found to date.
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ConNJECTURE III (L). The minimal lucky sequence is infinite. The sequence
has been carried successfully up to 2n=2350,000 (1673 terms). So far as we can tell,
the same asymptotic law appears to hold, i.e., the number of minimal luckies seems
to go as roughly the 0.6th power of the number of luckies.

So far we have not been able to devise a formula which satisfactorily pre-
dicts the number of lucky decompositions of a given even number. This is per-
haps due to the fact that there is no simple analogue of the unique factorization
property (and hence nothing like the Euler ¢ function). By working with
“pseudo-luckies,” i.e., those numbers remaining after a fixed number of steps
of the sieve process, we can calculate ratios analogous to the g® /¢(II,) of Sec-
tion 4; these do, in fact, enable us to predict the relative magnitudes of successive
2w to 10-159,.

It is clear, however, that a more refined technique is necessary in this case.
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THE ICOSAHEDRAL GROUP OF LINEAR TRANSFORMATIONS
IN THE PLANE

G. H. LUNDBERG, Vanderbilt University

Here is shown a method of computing several linear transformations in the
plane as applied to the rotation of the icosahedron and the dodecahedron. In
addition, there is shown a method of transforming the 2nd, 3rd, and 5th order
groups.

- The rotation of the icosahedron and the dodecahedron. The group of move-
ments which carry the regular icosahedron into itself are sixty in number. These
movements also carry the regular dodecahedron into itself because of the dual-
ity existing between the solids. The twenty faces of the icosahedron correspond
to the like number of vertices of the dodecahedron, and the twelve faces of the
latter correspond to the same number of vertices of the former. Both have thirty
edges. Thus, it is seen that the figures furnish the same set of axes. The six axes
of the fifth order groups are formed in the icosahedron by joining opposite pairs
of the twelve vertices and, in the dodecahedron, by connecting opposite pairs
of midpoints of the twelve pentagonal faces. Furthermore, the ten axes of rota-
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ConNJECTURE III (L). The minimal lucky sequence is infinite. The sequence
has been carried successfully up to 2n=2350,000 (1673 terms). So far as we can tell,
the same asymptotic law appears to hold, i.e., the number of minimal luckies seems
to go as roughly the 0.6th power of the number of luckies.

So far we have not been able to devise a formula which satisfactorily pre-
dicts the number of lucky decompositions of a given even number. This is per-
haps due to the fact that there is no simple analogue of the unique factorization
property (and hence nothing like the Euler ¢ function). By working with
“pseudo-luckies,” i.e., those numbers remaining after a fixed number of steps
of the sieve process, we can calculate ratios analogous to the g® /¢(II,) of Sec-
tion 4; these do, in fact, enable us to predict the relative magnitudes of successive
2w to 10-159,.

It is clear, however, that a more refined technique is necessary in this case.
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THE ICOSAHEDRAL GROUP OF LINEAR TRANSFORMATIONS
IN THE PLANE

G. H. LUNDBERG, Vanderbilt University

Here is shown a method of computing several linear transformations in the
plane as applied to the rotation of the icosahedron and the dodecahedron. In
addition, there is shown a method of transforming the 2nd, 3rd, and 5th order
groups.

- The rotation of the icosahedron and the dodecahedron. The group of move-
ments which carry the regular icosahedron into itself are sixty in number. These
movements also carry the regular dodecahedron into itself because of the dual-
ity existing between the solids. The twenty faces of the icosahedron correspond
to the like number of vertices of the dodecahedron, and the twelve faces of the
latter correspond to the same number of vertices of the former. Both have thirty
edges. Thus, it is seen that the figures furnish the same set of axes. The six axes
of the fifth order groups are formed in the icosahedron by joining opposite pairs
of the twelve vertices and, in the dodecahedron, by connecting opposite pairs
of midpoints of the twelve pentagonal faces. Furthermore, the ten axes of rota-
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tion for the third order groups are the lines determined by the opposite pairs of
centroids of the twenty equilateral triangular faces of the icosahedron, while its
dual produces the same axes by joining opposite pairs of its twenty vertices.
Both figures have their fifteen axes of rotation for groups of second order deter-
mined by opposite pairs of midpoints of the thirty edges. Thus, the rotations of
the two solids which carry each into itself constitute a closed set.

The transformations in the complex plane which correspond to each rotation
are derived in this article by considering the icosahedron. The results obtained
are applicable also to the movements of the dodecahedron.

FiG. 1.

Computation of certain transformations. In order to find the transforma-
tions in the complex plane which correspond to the rotations which carry the
icosahedron into itself, it is necessary to derive first certain auxiliary trans-
formations. Fig. 1 shows the icosahedron inscribed in a sphere, which is tangent
to the complex plane at the origin.

Fig. 2 shows the section of the solid in the plane determined by the axis of
reals and the axis of the sphere perpendicular to the plane at the origin, when
viewed from the positive side of the axis of imaginaries.

From this section, it can be observed that the trigonometric functions of the
acute angle 4/2 of the right triangle O’OL are cos 4/2=(r—h)/r and sin 4/2
=a/2r. Since the angles 4/2 and B are complementary, cos B=sin 4/2=a/2r.
By the Pythagorean Theorem, (r—#h)2+4a%/4=r2, and by the Law of Cosines,
3(a2/4) =(r—h)2+r2—2r(r—h) cos B. When the value a/27 is substituted for
cos B in the foregoing equation, and the equation immediately preceding it is
subtracted from it, the result is 2(r—hk)2—a(r —h) —a?/2=0. If the negative
root is disregarded,

a(l + +/5)
——-——-4 ’

v —h=
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whence

T A
8
Substituting the value for (r—#£)? in the equation, r*=(r —k)2--a?/4, gives

B a*(5 + +/5) .
B 8

r2

K K:

Fic. 2.

The cosine of any angle, in terms of the cosine of its half, is cos 4 =2 cos? 4/2
—1. The substitutions of first the value of cos 4/2 and then the values for
(r—h)? and 72 give cos 4 =+/5/5. Thus, tan 4 =2. In the right triangle 0’0.S,
tan 4 =K;/r. If the radius of the sphere is %, then K;=1, which represents a
point in the complex plane on the axis of reals.

The general transformation in the complex plane for any rotation of the
sphere about an axis parallel to the axis of imaginaries is

az+ b
B —bz+a

/

If K, is carried into the origin by a counterclockwise rotation,
a+b
—b+a

then a= —b. The transformation in the complex plane corresponding to a rota-
tion of the sphere with an axis parallel to the axis of imaginaries, which brings
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vertex Y to the position occupied by X, is

I_z—l

z__ .
z4+1

The inverse transformation which sends the icosahedron back to its first position
is

24+ 1
—z+1

3 =

Since the line OZ is the altitude on one side of an equilateral triangle with
side a,

0z = ——.
2

Then ON = +/3a/3 for the N lies at the centroid of a face of the icosahedron. In tri-
angle O’ NO, the Pythagorean relationship gives

Wz = 2 — (ﬂ)z.
3

On substituting for 72 we obtain

74+ 34/5
O'N? = (_—_l__i>az’
24

and
a3+ 5)
44/3

Substituting this value of O’N in the trigonometric form, tan C=+/3a/30’N,
derived from the right triangle O’ NO, gives tan C=3—+/5. From the right tri-
angle OO'T, tan C= —K,/r; then on substitution of values for tan C and r, the
result is Ko = —3(3—+/5), which represents a point in the complex plane on the
axis of reals.

Using the same transformation,

O'N =

, az+ b
=
—bz+a
to carry the K, into O in a clockwise rotation about the axis, we obtain the rela-

tion between the constants b =21a(3—+/5), making the specific transformation
for this rotation

, 243 — 45
z = )
(=3++/5)z+2
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the inverse of which is
S = 22 — 34+ /5 .
B —=5)z+2
Since the angles (44 C) and D are supplementary, we have that

tan 4 + tan C

tanD=—tan(4+C)=—"—"—"-—":
an (4+0) tan4AtanC — 1

On substitution of the values for tan 4 and tan C and simplifying, we obtain
tan D=3++/5. Inright triangle O'OR, tan D= — K;/r, whence K3= —1(3++/5).

Then if K; is carried into the origin by a clockwise rotation, the relation
between the constants in the general transformation

az + b 1
g = ——, is b=—0aQ@+ V5);
—bs+ d, 2 ( \/ ),
and the specific transformation for this rotation becomes

2z 4+ 3 4+ /5
z = )
—@B+V5z+2

whose inverse is
2z — 3 — /5
z = ———
B+ V5)z+2

Transformations of fifth order groups. In the transformations of the ico-
sahedron given in this article, each of the powers of R indicates one of the fifth
roots of unity. In this section, the method of deriving six groups of order five,
consisting of rotations about axes determined by the pairs of vertices (1, 7),
(4, 12), (5, 11), (2, 9), (3, 8), and (6, 10) of Fig. 1, is given.

The transformations in the complex plane which carry the icosahedron into
itself when the poles of the axis are 1 and 7 will consist of

2/ = Rz, 7 = R, 2 = R3;, 2 = Ri, and 2 =z

Here, each rotation is through one of the fifth roots of unity.

In order to find the first transformation of the fifth order group when the
poles of the axis are at 4 and 12, the solid is first carried through a counter-
clockwise rotation about the axis parallel to the axis of imaginaries by means of
the first auxiliary transformation,

z—1
z-l—l’

then counterclockwise about the perpendicular axis through the first fifth root
of unity, giving

’
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Rz—l
Rz+1

/

and, finally, clockwise about the axis parallel to the axis of imaginaries by the
inverse of the auxiliary transformation, resulting in

_R+H+R-1
T MR- +R+1

/

This result corresponds to the counterclockwise rotation about the axis deter-
mined by vertices 4 and 12 through an angle of 72°.
Repeating this transformation gives

_®RtDstR-1
( —1)Z+R2+1

which corresponds to a counterclockwise rotation of 144° about the same axis.
This result can also be obtained directly by using the following transformations
in the order given:

z—1 1
7 = ) 2 = R%, and 7 = s

24+ 1 a1

The remaining three transformations of this fifth order group can likewise
be found by three more successive repetitions or directly by using, in turn, the
third, fourth, and fifth roots of unity between the auxiliary transformation and
its inverse. These are given below in the order of their rotations of 216°, 288°,
and 360°:

_®4 D4Rl ®RADaFR-T
T®-1itR+1 T R —DitRA1

/

and 2’ =z.

Each set of poles (5, 11), (2, 9), (3, 8), and (6, 10) is, in turn, rotated about
the perpendicular axis through one of the fifth roots of unity, so that their new
positions in the plane are determined by the axis of reals and the perpendicular
at the origin. Then, the solid in each case is rotated back about the perpendicu-
lar axis through the inverse angle, after the same rotations are performed as
were performed with the solid when the poles were 4 and 12. Thus, all the fifth
order transformations of each set of poles can be found. An illustration follows:
if the poles are 5 and 11, the transformation for a counterclockwise rotation of
72° about their axis is found by using the following transformations in the order
given:

7' = Rz, 7 = , 2’ = Rz, 2 = —
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and 2’ = Rz. This results in the transformation,

_ U+ Rz+1-R

T (R*—Rz+1+R

Similarly other members of this set are found to be

_ (R*+1)s+R— RS . R+ D+ R—

T ®-Ritr+1 T ®R-_—RitR+1
(R + 1)z + R* —

T U—RztR 1

The transformations of the three fifth order groups having as their respec-
tive poles of rotation (2, 9) (3 8), and (6, 10) are, respectively,

/

R+ s+ R — (R4 15+ R —

T ® R3)z+R+1 T ARyt R+
Rt 1-R R+ Ds+ R— R ,
T R-RutR+l T ®_mutrmtl M EeE

(R+1)z+R*— R . (R4+1D)s+R-R
= ] z = )
(1—R4)z—i—R+1 (R — R9z+ R* + 1

(R® + 1)z + R* — (RE+1)z+1—R
g = 7 = and 7' = z;
(R* — R4)z-I—R3-I—1 (R — R9z+ R+ 1
and
. (R+Da+ R - R+ DzH1-R
2

(RS RZ)z+R+1 TR Rt R+

_®4D:HR-F R4 DR L
TA-Rp+R+1 T R-RYat R+l TR

’

Transformations of the third order groups. If the first position of the ico-
sahedron is assumed to be as it is in Fig. 1, it is seen that the clockwise rotation
about the axis parallel to the axis of imaginaries represented by the second auxil-
iary transformation,

B 22 + 3 — /5
T (=34 S)st2

brings two opposite faces, represented by the two pairs of triple sets of vertices
(1, 2, 6) and (7, 9, 10) to a new position where both are parallel to the plane.
The axis of rotation for these pairs of opposite faces will now be perpendicular to
the plane at the origin. Next, if the solid is rotated in a counterclockwise direc-
tion about the perpendicular axis through the first cube root of unity repre-
sented by w, the product transformation will be
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_ Zws+3—+/5
T (=3w+ VS50)z+ 2’

and, finally, when the solid is moved in the clockwise direction about the axis
parallel to the axis of imaginaries by the inverse of the auxiliary transformation
given above, the resulting transformation is

_ (=20 =7+ 3V3)z+ (0 — 1B — V/5) )
(w— 1B =52+ (—2 — Tw + 34/5w)

This is the first member of the third order set which has its upper face (1, 2, 6)
in the position shown in Fig. 1. The movements made have precisely the same
effect as rotating the solid counterclockwise through an angle of 120° about the
axis of the faces in the position they were originally.

In a similar manner, using the following transformations in the given order,

224+ 3 —4/5 22 — 34 /5
z = 1) —_—
(=34 /5)5 + 2 B — /55 + 2

the second member of this third order set is

_ (=20 — 7+ 34/5)z + (0 — 1)(3 — +/5)
(@ — 1)(3 — v/5)z + (=2 — Te? + 3+/507)

and, similarly, the third member becomes the identity, 2z’ =2. The second and
third members may also be found by one and by two repetitions, respectively,
of the first member of this third order group.

The transformations of the four third order groups corresponding to the
rotations about axes passing through each pair of the remaining opposite faces
arranged around the vertices 1 and 7 may be found in the following manner:
the icosahedron is first rotated about the axis perpendicular to the plane through
one of the fifth roots of unity. Next, one set of movements of the third order
group just derived is made. Then, finally, the solid is turned back clockwise
through the inverse of the first rotation.

For example, the first member of the third order group of transformations
corresponding to the counterclockwise rotation of 120° about the axis which
passes through the opposite triangles determined by the sets of vertices (1, 5, 6)
and (7, 11, 12), is found by using the following transformations in the order
given:

/

2

’

7 = w3, and 2 =

!

22+ 3 — /5
IV P
and 2’ = R*. The resulting transformation is

g (F20-T+3VSi+ (0= DER— V5R)
(0 — 1)(BR* — V/5RYz + (—2 — Tw + 3/5w)

) . —2+3—+5
2 = wz, g = )
(=3 ++/5)5— 2

7 = Rz,
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Similarly, when the middle transformation is 2z’ =w?z, instead of 2’ =wsz, the
second member of this set becomes

(—2w? — 7+ 3v/5)z + (0* — 1)BR — V/5R)
(w —1)(BR*— V5RYz2+ (—2 — Tw? + 3\/5(.02)
Finally when the middle transformation is 2’ =w?s or the identity, the result
will be the identity, 2’ =2. The second two members may be derived also by suc-
cessive repetitions of the first.

Analogously, the transformations of the three remaining third order groups
whose axes pass through the upper faces of the icosahedron are:

(20— T+ 35+ (0 — 1)(3R? — 2\/5R2)
T (@— DBR — v/5SRYz + (—2 — Tw + 3v/50)
(=202 — T4 3v/5)s+ (o — 1)(3R2 — 2+/5R)
T (@ — DBR® — v/5R%z + (=2 — Ta? + 3v/50?)
(=20 — 74 345)z 4+ (w — 1)(3R? — 4/5R?)

T (= DER — v/5R)z + (=2 — 7w+ 3v/50)
(=20 — 7+ 3+/5)z + (0 — 1)(3R® — +/5R?)

g = and 3 = gz;

(@ — 1)(3R? — /5R%z + (=2 — Ta? + 3+/502)

/

and

( 20 — 74+ 34/5)z 4+ (w — 1)(3R* — \/5R4)
(0—1)BR—-V5R)z+ (—2 — Tw+ 3\/5w)
(=20 =T+ 34/5)z + (w2 — 1)(3R* — \/5R4)
" (= DBR — +/5R)z+ (—2 — Tw? + 3507

/

’

and 2’ =z. The five remaining groups of the third order of the icosahedron are
derived from the five sets of opposite triangles which lie on a portion of the sur-
face between those sets which have already been considered.

The first transformation of the third order group corresponding to a counter-
clockwise rotation of 120° about an axis parallel to the axis of reals is found as
follows: the icosahedron is first rotated clockwise about the axis parallel to the
axis of imaginaries, sending the pair of opposite triangles to a position where
both are parallel to the plane. This is effected by the auxiliary transformation

2+ 3+ /5
-3+ V5242

The solid is then rotated through 120° counterclockwise about an axis perpen-
dicular to the plane. The product transformation of these two rotations is

2wz + 3 + /5
—Bw + VS5w)z + 2

7 =
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Finally, the icosahedron is rotated counterclockwise about an axis parallel to
the axis of imaginaries by means of the inverse of the third auxiliary trans-

formation,
22 — 3 — /5
B+vos+2
making the resulting transformation

(—20z — 7 — 35z + (0 — )3 + +/5) .
(0 — D@+ VSz+ (=2 — Tw — 34/5w)

If the second rotation is through 240°, the result is the second member of this
third order group

) =

(=20 — 7 — 3/5)z + (0* — 1)(3 + V/5)
(@2 — D@+ V524 (—2 — Tw? — 34/50?)
A complete revolution for the second rotation gives the identity 2’ =z.

These three sets of rotations, when preceded by rotations of each of the fifth
roots of unity and succeeded by their respective inverses, will produce all the
rotations of corresponding transformations of the remaining third order groups.
The third order groups of transformations which correspond to the counter-
clockwise rotations of each of the remaining sets of opposite faces of the central
surface of the icosahedron, as represented in Fig. 1, are then:

(=20 — 7= 3vV5)z+ (0 — 1)(3R + +/5R)

(0 — (3R + V5Rz + (=2 — T — 3+/50)

(=2 — 7 — 345z + (0 — 1)(3R + +/5R)

T (@ — )BR* + v/5RYz + (—2 — Tt — 3+/507)

) =

’

and 2’ =z;
S (21— 3Vt (0 — DER+ VR
(@ — 1)(3R® + v/5R9)z + (=2 — T — 3+/50)
, (=20 =7 — 3453+ (& — 1)(3R* + +/5R?)
T (@ — DGR+ V/5R)z + (=2 — Ta? — 3v/50%)
and 2’ =z;
, ( 20 — 7T — 34/5)z + (0 — 1)(3R3 + v/5R?)
T e — DGR+ VSRYz+ (—2 — T — 3+/5a)
L, _ (22— 1= 3V9)s + (@ — DER + VSRY

(@ — 1)(3R? + 5R)z + (—2 — Tt — 3+/50%)

and 2’ =z;


http://www.jstor.org/page/info/about/policies/terms.jsp

90 MATHEMATICS MAGAZINE [Mar.—-Apr.

(=20 — 17— 355+ (o — DBR¢ + v/5RY)
" @ — DBR+ vV5R)z + (=2 — Tw — 3v/50)
_ (20— T 3VS)st (@ — DER'+ V5RY
T (@ — DBR + vV5R)3 + (—2 — Tw? — 3v/507)

and 2’ =z.
The second and third members of each set can be reproduced from the first
member by one and two repetitions, respectively.

Transformations of the second order groups. The first five of the fifteen
second order groups to be derived will be those having axes of rotations passing
through each pair of midpoints of the upper edges separating the faces of the
central surface when the icosahedron is in the position indicated in Fig. 1.

Since the axis parallel to the axis of imaginaries passes through the mid-
points of a pair of opposite edges, the transformation, carrying the solid into
itself, corresponding to a counterclockwise rotation of 180° is 2’ = —1/2, which
is of second order.

Each of the remaining four pairs of opposite edges of the central surface
can be brought into the same position as the first pair considered by rotating
the solid counterclockwise about an axis perpendicular to the plane through
one of the tenth roots of unity. If the solid in each case is then rotated counter-
clockwise through 180° about the axis parallel to the axis of imaginaries and
later rotated about the perpendicular axis through the inverse of the tenth root
of unity selected, the remaining second order transformations for the central
portion of the icosahedron can be found.

The transformations,

=T3 or @ =—R%, ¢=——, and 2 =1T% or 3 = — R,
2
in which each of the powers of T represents one of the tenth roots of unity,
when performed in the order given, produce z’= —R/s, a transformation of
order two.
Analogously, the other transformations for rotations about the axes parallel
to the plane are

R2 R3 Rt
g == gd=——, and &= ——-

4 z Z

It is evident that each of these second order transformations, repeated, will give
the identity.

The next five transformations of period two will be those corresponding to
the rotations about the axes which pass through each pair of opposite and
parallel edges radiating from vertices 1 and 7 of Fig. 1.

In order to find these five transformations, it is first necessary to derive the
transformation carrying the icosahedron into itself when the axis of rotation of
a pair of opposite edges of the central surface is parallel to the axis of reals.
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The general transformation of the sphere when the axis is in this position is

_az—l—b
—bz+a

zl

So when the vertices are carried into themselves by a counterclockwise rotation
of 180°, the transformation is 2’ =1/z.

To find the second order transformation about an axis passing through the
edges determined by the two pairs of vertices (1, 6) and (7, 10), the sphere is
first rotated counterclockwise about an axis parallel to the axis of imaginaries
by means of the auxiliary transformation,

, z— 1

=z+1.

Next, the sphere is turned about the axis perpendicular to the plane at the origin
through the first twentieth root of unity, making the product transformation

, Sz—1
3 = )
Sz 4+ 1
where each of the powers of S indicates one of the twentieth roots of unity. The

third movement is a counterclockwise rotation of 180° about the axis parallel
to the axis of reals, so the single transformation for all the rotations thus far is

S

2
7 = :

S

Z

z

The last two rotations to be made are the inverses of the first two taken in
reverse order, which produce, first

and then
—z4 1 — St — 518
—4 14 5%+ 51

g =

which, in terms of the fifth roots of unity, is
, (=14 RYz+4+1+ R
2 =
(—1 — R)z+1—R*

which brings, with one repetition, the identity, 2’ =z.
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The second order transformation corresponding to a counterclockwise rota-
tion of 180° about an axis through opposite edges determined by the two pairs of
vertices (1, 5) and (7, 11) can be obtained from the same six transformations
used in deriving the second order transformation above, when they are used
after and before the transformations,

7 = Rz and 37 = RY%,
respectively. The single second order transformation which corresponds to all

six of the transformations may be employed instead. The following transforma-
tions, if performed in the order

(-1 +R)+ 14 R
(-1 —R)24+1-R

/

7 = Rz, 3

produce the second order transformation
, (-1+R)+ R+ R
z = .
(—R*— R)z+1— R?

Analogously, the remaining three second order transformations which have
axes of rotation passing through the opposite edges which radiate from vertices
1 and 7 are

, (F14+R)z+ R+ R* , (-1 +R)z+ R* 41
2 = Z =
(—R'—1)z+1—R* (—R*— Rz +1—R*

and
,  (“1+ R+ R+ R
T CR—Ri+1-R

The final five second order transformations to be derived are those whose
axes of rotation pass through each pair of opposite edges which are parallel to the
plane.

The process of finding the second order transformation corresponding to a
counterclockwise rotation of 180° about an axis which passes through the op-
posite pair of edges determined by the pairs of vertices (2, 3) and (8, 9) in Fig. 1
is as follows: the sphere is first rotated counterclockwise about an axis parallel
to the axis of imaginaries by means of the transformation

, #—1
g = - .
24+ 1
Then the sphere is turned counterclockwise about the perpendicular axis through

the first tenth root of unity, making the product transformation for both the
rotations thus far

—R?z — 1
T R4 1

ZI
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since —R¥=T.
If the sphere then is rotated counterclockwise 180° about the axis parallel
to the axis of imaginaries, the resulting transformation for all three rotations is

R3
——1
,_Z
- =
— 41
14

Finally, if the inverse operations of both of the first two transformations are
carried out in reverse order, they give

3z R—1)z—R—1
z'=T—; and then, z’=§R+1; R—I—l’
— z—
1
- +

which gives the identity upon one repetition.

When the axis of rotation passes through opposite edges determined by the
pairs of vertices (6, 2) and (8, 10), the corresponding transformation for a
counterclockwise rotation of 180° can be found by using the following trans-
formations in the order given:

z—1 1
2 =Rz 7= y =Tz or d=—R3 2=——,
z4+1 4
' ’ / Z+1 ’
g =1T% or 3= —R% 3 = » and 2 = Rig
—z+1

or, in place of the middle five, their product transformation,
, (R—1)z—R-1
z ==
(R+1)z—R+1

can be used. The result in either case is
, R—1)z—R'—-R
g = .
R+ 1)z— R+ 1

Analogously, then, the remaining second order transformations are:

_(R—1)s— R — R , (R—1i—R‘— RS
T (R*+R)z—R+1

’

TRt R)-R+1

and
_(R—1)z—1— R
C (R*+Rz—R+1

/
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AN ADDITIONAL REMARK CONCERNING THE DEFINITION OF A FIELD
JosePH J. MALONE, JR., University of Houston
In this MAGAzINE, A. H. Lightstone [1] has shown that the right-distribu-

tive law is not a consequence of the other defining properties of a field. He does
this by giving the following example of a nonright-distributive system:

+]0 1 - 10 1
00 1 010 1
1110 110 1.

We shall show that if (S, +, -) is such that

1) (S, +) is an Abelian group,

(i) (S— {0}, -) is an Abelian group,

(iii) (S, -) is a semigroup,

(iv) multiplication is left-distributive over addition and

(v) the order of S is greater than 2,
then multiplication is right-distributive over addition. Thus Lightstone’s exam-
ple is the only instance of a nonright-distributive “field,” i.e., other than in his
one example, the right-distributive law is a consequence of the other field postu-
lates.

For x, 9, 2E€S5, (y+2)x will equal yx-+zx if y5%£0, 220, or y+25£0. Postu-
lates (ii) and (iv) yield this result. If y=0, 2=0, or y-+2=0, then the validity
of the right-distributive law depends upon establishing that 0x=0. Note that
the left-distributive law assures us that x0=0.

If x&S and x50, 0x = (x0)x =x(0x) and (0x)x!=x(0x)x~1. Thus

) 0e = x(0¢).

Either 0e=0 or 0es20. If 0es#0 multiply each side of (1) on the right by the
multiplicative inverse of Oe and obtain e=xe or e=x. This is Lightstone’s case
in which S contains only 0 and e, but is contrary to our postulate (v). If we then
let 0e=0 and select x so that x3e, x>0, we obtain 0=0e=0(xx"1) = (0x)x~1.
Since (ii) assures us that a product is 0 only if one of the factors is 0 and since
x~15£0, we have 0x =0. Thus we have demonstrated the desired result and the
right-distributive law follows as a consequence of the other field postulates.

Reference

1. A. H. Lightstone, A remark concerning the definition of a field, this MAGAZINE, 37 (1964)
12-13.
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A PARTIAL SOLUTION TO A CONJECTURE OF GOLOMB
MarTiN J. ComEN, Beverly Hills, California

The following problem has been proposed by Golomb in [1]: Let M be a
m-dimensional n X# X + - - X#n array of nonnegative integers;let 4(a, as, * - *,
@n) be the entry whose position is (a1, @z, + + + , am); and let

S(d1,02, o '7am)= Z A(kla gy * * "am) + Z A(al’k%' ° ':am)'l" ct

k1=1 ko=1

+ Z A(aly gy * * ° km)'
Ep=1

If S(ai, as, + ++, am) =n whenever A(ai, as, + + +, an) =0, what can we say
about the sum of all the entries of M?

Golomb conjectured that this sum is =#™/m but this has only been proved
for m=2 (see [1]). In this note it is proved that the sum is >nm/(m+1).

Let S be the sum of the elements of M and Z the number of zeros in M so
that S+Z =#»™ and

n n n
S=2 2 0 X Alayay -, ).
a;=1 as=1 ap=1

We see that

n

Z E st ZS(al,az,---,am)=mnS

a1=1 ags=1 am=1
since, for any 1,
Z Z P Z ZA(G1,"',k¢,"',dm)=ﬂS-
ai=1 as=1 am=1 k=1
Also, since S(ai, - -+, an) =n if A(@, -+, an) =0 and S(ay, - - -, an)
zmA(ay, - -+, an) if A(ay, -+ -, am) 0,
> e X S(ay, vy am) = Zn A+ Sm= S(m — n) + nmt,
a1=1 ap=1

Thus mnS = (m—n)S+nmt! or

nm+1 nm

N

1%

> .
mn+n—m m-+1
Note that Szum/m if m=n.

Reference
1. Solution to problem E 1535, Amer. Math. Monthly, 70 (1963) 1005.
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THE DEFINITION OF FUNCTIONS FROM CERTAIN
NONLINEAR DIFFERENTIAL EQUATIONS

PAULA WINN CARTER, Southern Methodist University AND
F. MAX STEIN, Colorado State University

1. Introduction. In the study of mathematics various functions are defined
or arise in a variety of ways. For example, the reader’s initial introduction to the
trigonometric functions was probably to consider them as ratios. Other functions
may have been introduced as inverses; e.g., the logarithm function may have
been defined as the inverse of the exponential function.

On the other hand, the logarithm function may have been defined as an
integral, see [2], where

e dt
Inx = — x>0,
1 ¢
with the property that In(1) =0.

Also as one progresses in his study of mathematics he is able to define func-
tions involving parameters that reduce to previously defined functions for cer-
tain particular values of the parameters. We cite first as a simple example the
function f(x) =b%*; the graph of y=7f(x) is a straight line for ¢ =0, b0, and is
the curve y=¢* for a=1 and b=e.

As a second example the gamma function is initially defined in terms of an
improper integral,

I'(x) = f #le~tdi, x> 0;
0

the definition is then extended to negative nonintegral values of x by the recur-
sion relation I'(x+1) =xT'(x). Furthermore for positive integral values of x, the
gamma function takes on the values of the factorial function. Thus the gamma
function is often described as the generalized factorial function.

In this paper we propose first to present some functions that have been
defined as solutions of certain nonlinear differential equations. Then we shall
show how, for certain values of the parameter involved, these new functions re-
duce to old friends—some functions that have been defined by other means.

2. The Jacobian elliptic functions. The first Jacobian elliptic function
sn(k, t) has been defined (see [1]) as the inverse of the elliptic function,

¥
(1) ¢ =f [A — )1 — k22)]-12dx; ie., t=snly and y = sn(k, 1),
0

where sn(k, t) is a function of the variable ¢ and the parameter , called the
modulus, and 0 <k <1.
That is, y=sn(k, f) is required to satisfy the differential equation

(2 (0= 1 — )1 — &%),
with the conditions that y(0) =0 and »'(0) >0.
96
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If in (2) we make the substitution y2=1—x?, we get the equation
©) 0= -1 -r1-m»], 0)=1,

after changing notation from x to y. We now define the function y=cn(%, ¢) to
be the solution of (3) and note that sn(k, {) and cn(k, {) satisfy the identity

sn2(k, £) + cn?(k, t) = 1.
If in (2) we make the substitution y2= (1 —x?)/k?, we obtain the equation
4 O)=0A—-y0*+ k-1, 30 =1,

again after changing notation from x to y. The function y=dn(%, ¢) is defined to
be the solution of (4) ; we see from the substitution made that sn(k, {) and dn(k, {)
satisfy the identity

dn2(k, ) = 1 — k% sn2(k, £).
Having defined the three main Jacobian elliptic functions sn(%, £), cn(k, £),

and dn(k, ), we proceed to define the corresponding reciprocal and quotient
functions, using Glaisher’s notation (see [4], p. 494):

ns(k, #) = [Sn(k’ t)]—l7 nc(k, £) = [Cn(k, t)]—l:

sc(k, t) = sn(k, 1) , cs(k, f) = cn(k, .
’ cn(k, t) ’ sn(k, 1)
These functions satisfy the following differential equations:
(5a) y=mnsk ): ()= 0"— 1Ok, y(0) = =,
(5b)  y=mncki): ()= =D -2+ E, 5(0) =1,
(5¢) y=sclh ): ()= (L+y)[1+ (1 - )y, 9(0) =0,
(5d) y=cs(k 2): () =0+ +— k), y(0) = =.

The Jacobian elliptic functions are defined for 0 <k <1. When k=0, how-
ever, it is known that (see Bowman, [1], p. 10-11) the elliptic functions reduce
to the circular trigonometric functions; i.e.,

sn(0, ) = sin ¢, cn(0, £) = cos ¢, dn(0, ) = 1,
sc(0, ) = tant, cs(0, £) = cot ¢,
ns(0, £) = csc ¢, nc(0, £) = sect,
which may be shown by letting £=0 in the corresponding differential equations.

When k=1, it is known that (see Bowman, [1], p. 10-11) the elliptic func-
tions reduce to the hyperbolic functions; i.e.,

sn(1, ) = tanh ¢, cn(1, £) = dn(1, #) = sech,
ns(l, ) = coth ¢, nc(l, £) = cosh ¢,
sc(1, £) = sinh ¢, cs(1, £) = csch ¢,

which may be shown by letting 2=1 in the corresponding differential equations.
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When £ is allowed to become imaginary, we define an extension of these func-
tions. Letting k=1u, k2= —u?, we see that the differential equation (2) becomes

(6) )= 01—y )1 +u%?, y0) =0.

We then define the function y=hsn(u, ) as the solution of (6). (The notation
hsn(u, #) is chosen in anticipation of the analogy to a corresponding function to
be defined later.)

Upon making the substitution y2=1—x? in (6), we obtain the differential
equation

(7 O =1 =1+ —-y], 30 =1,

after changing notation from x to y. The function y=hcn(u, ) is defined to be
the solution of (7), and we see further that hsn(u, {) and hen(u, ¢) satisfy the
identity hsn?(u, £) +hen2(u, £) =1.

If in (6) we make the substitution y2= (x2—1)/u?, we obtain the differential
equation

(8) OE=0A—-yOH*—u—1), 50) =1,

after changing notation from x to y. The function y =hdn(u, f) is defined to be
the solution of (8), and we see from the substitution made that hdn(u, {) and
hsn(u, ) satisfy the identity

hdn?(u, §) = 1 4 p? hsn2(y, ¢).

Having defined the three functions hsn(y, ¢), hen(u, £), and hdn(u, £), we proceed
as before to define the reciprocal and quotient functions:

hns(u, ) = [hsn(u? t)]_l; hne(y, #) = [hCn(,u, t)]_—l;

hsn(u, &) hen(, £)
hsc(y, £) = m , hes(u, £) = m .
These functions satisfy the following differential equations:
(92)  y=hns(u, ): )= - DO+ ), y(0) = o,
(9b)  y=hnc(y, ): ()= 0= DA+ sy — w2, y(0) =1,
(9c)  y=hscl,): )= >+ DA+ )y +1], y(0) =0,
(9d)  y=hes@k, : ()= 1 +y»)A+y+u), y(0) = .

As is to be expected, when u=0 these functions reduce to the trigonometric
functions, hsn(0, #) =sin ¢, hcn(0, £) =cos ¢, and so on, as in the case for £=0.
This may be shown by letting =0 in the differential equations (6), (7), and
(%a, b, c, d).

Thus the Jacobian elliptic functions and the corresponding elliptic functions
for the imaginary modulus % are examples of functions which may be defined as
the solutions of certain nonlinear differential equations, which reduce to the cir-
cular trigonometric functions and the hyperbolic functions for certain values of
the parameter %.
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3. The quasi-trigonometric functions. We now consider the differential

equation

(10) O =m2(1 —m»?, y(0) =0, 4'(0)>0.

We define the function y =nis 6 to be the solution of (10), where m is a parameter
such that m=sin N, 0 <A=m/2. Since »'(0) >0 and [y] =1/m, (10) reduces to

v
¥y = (m?—y)12, or f (m=? — )12 = 4.
0
Thus 6 =sin~!(my) and

sin @ .
= nis 6.

11 =
(1) 4 sin A

We then consider the differential equation (10) with different boundary condi-
tions,

(12) O =m2(1 —m»y), 30 =1, |y| =1/m.

We define the function y = conis § to be the solution of (12). Then 3y’
=m~ (1 —m?y?)

’
0 = f (m2 — 27124 = cos™imy — coslm,
v

or y= cos § — cos A nis 0; i.e.,
(13) conis § = cos § — cos A nis 6.

From the functions nis 6 and conis § the following reciprocal and quotient
functions may be defined:

coces 6§ = (nis 6)7, ces 6 = (conis 6)1,
(14) nis 4 conis 0
nat § = — conat f = — .
conis 6 nis §

These functions satisfy the following differential equations:

(15a) y = coces 6: (¥')* = m7*y*(y* — m?), ¥(0) = =,
(15b) y=ces:  (¥) = m 7y (y* — m?), y(0) =1,
(15¢) y=mat6: ()2 =m2[2+ 291 —mH2+ 12, (0) =0,
(15d) y = conat 8: (3)? = m~2[y? + 29(1 — m?)1/2 4+ 1], (0) = .

When N=m/2, m=1 so that these functions reduce to the conventional
trigonometric functions. This may be shown by letting A=7/2 in equations
(11) and (13), so that nis 6 =sin § and conis 8 =cos 8; the reciprocal and quotient
functions follow so that coces @ =csc 0, ces  =sec 6, nat §=tan 0, and conat 0
=cot 0.


http://www.jstor.org/page/info/about/policies/terms.jsp

100 MATHEMATICS MAGAZINE [Mar.—Apr.

That these functions reduce to the trigonometric functions may also be
shown by letting m =1 in the differential equations (10), (12), and (15a, b, c, d).

If N is allowed to assume imaginary values, we further extend our class
of functions. Letting A=1¢, where ¢ is real and m =sinh ¢, we obtain from the
differential equation (10)

(16) O = m2(1 +m*?),  3(0) = 0.

The function y=hnis 0 is defined to be the solution of (16). In a manner anal-
ogous to that in which the function nis § was shown to equal csc A sin 6, it may
be shown that

sinh 6
sinh ¢

7 hnis § =
The function y =hconis 6 is defined to be the solution of the differential equa-

tion

(18) O = w21 +m?),  5(0) = 1.

In a manner analogous to that in which the function conis # was shown to
equal (cos @ —cos N nis ), it may be shown that

(19) hconis 8 = cosh 6 — coth ¢ sinh 6.

Again in like manner the reciprocal and quotient functions may be defined:

hcoces 6 = (hnis )7, hces 8 = (hconis 6)1,
hnis 6 hconis 8
hnat 0 = ’ hconat § =
hconis 8 hnis 6

These functions satisfy the following differential equations:

(202) y = heoces 0:  (5/)? = m2y*(y* + m?), 3(0) = o,
(20b) y =heesf:  (¥)* = m?y*(y* +m?), ¥(0) =1,

(20c) y=hnatf:  (3)2 = m2[y? + 29(1 + m?)12 4 1]2, 4(0) = 0,

(20d) y = hconat 8: ()2 = m2[y2+ 29(1 +m?) + 1],  9(0) = .

Thus we have another example of a class of functions which may be defined
from certain nonlinear differential equations, and which reduce to the conven-
tional trigonometric functions for certain values of the parameter.

4. Discussion of the quasi-trigonometric functions. It should be observed
that the class of functions defined in section three above is the same as that
defined as quasi-trigonometric functions by Strand and Stein in [3]. There the
quasi-trigonometric functions are defined in a manner analogous to that of con-
ventional trigonometry using an oblique coordinate system, Fig. 1, where
0=\=2m x is the abscissa, y the ordinate, and # the distance from the origin
to the point P(x, ¥). The present definitions (11), (13), and (14) are there de-
rived from geometric ratios; certain basic identities involving the quasi-func-
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tions and the trigonometric functions are also derived, all of which reduce to
conventional trigonometric functions when A =/2.

+y

P(x, )

¥

v

/ A & +x

F1G. 1

When 0<N=7/2, i.e.,, 0<m =1, the quasi-trigonometric functions are said
to be quasi-elliptic in nature, [3], a situation analogous to the Jacobian elliptic
functions for 0 <% <1. When the parameter % is allowed to assume certain values,
the Jacobian elliptic functions reduce to the hyperbolic functions; in quasi-
trigonometry, functions referred to as quasi-hyperbolic [3] result when the
parameter is allowed to become imaginary.

5. Conclusion. Here we have shown how Jacobian elliptic functions and
quasi-trigonometric functions may be defined as solutions of certain nonlinear
differential equations. Also shown is how these functions reduce to the well-
known trigonometric or hyperbolic functions for particular values of the param-
eters involved. Thus the functions here defined may be considered as general-
izations of the trigonometric and hyperbolic functions.

As a side result we observe the tenuous connection between all of the func-
tions involved, a partial answer to the question often asked by students when
they encounter the hyperbolic functions for the first time.

Prepared in a National Science Foundation Undergraduate Science Education Program in
Mathematics at Colorado State University by Miss Carter under the direction of Professor Stein.
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WAITING FOR A BUS

ALAN SutcLIFFE, Cheshire, England

Suppose two independent bus services operate hourly over a route, how long
can an intending passenger, who is ignorant of the timings, expect to wait?

Taking the time of one of the buses as 0, 1, 2, - - - hours, and the other as
x,x+1,x+2, - - - hours, we see that the passenger has a chance of x of arriving
between 0 and x, when he will have an average waiting time of }x, and a chance
of 1 —x of arriving between x and 1, with an average waiting time of (1 —x).
This is shown diagrammatically in Figure 1. Thus his combined waiting time will
be 1x?2+3(1 —x)2=x2—x-+1, in hours. Now x may have any value from 0 to 1,
so that the average waiting time over all these values is

1
2 3 2 1 .
f (¢ — x4+ 3de = [3x — 32 + %x]0 = %, in hours.
0

These 20 minutes of waiting time compare with 15 minutes in the case of a co-
ordinated service with the optimum half hour interval.

Time of
waiting

1—

3l

x? 3(1—x)?

0 x 1
Time of arrival at stop

FiG. 1.

If N independent hourly services operate, having times xo=0=x; =%, - - -
<xy-1=1, then the situation is as shown in Figure 2. For particular values of
the x,, the average waiting time will be

N—1
> (21 — )% taking ay = 1.

r=0

Hence, as the x, can vary, it is necessary to integrate for each one, and the
average waiting time of xy hours is given by

1 TN—1 zg3 N—1 1
XN = (N - 1)’f f v Z —(x,+1 - x,)2dx1 e de_zde*l.
0 Yo 0 =0 2
Then, writing

102
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1 ZN-1 2
Sw{z} for (N -— 1)!f f e f {z}day - -+ day_odun_y,
0 0 0

N-1 , N2 1
XN=SN{an- Z xnxn+1“xN—-1+“‘}-
n=1

n=1 2

Applying the repeated integrations to the terms separately gives

SN{N—EIx:} _N-t SN{S xnxm} _W-@-neN+3y)

= 3 =~ 6N(N + 1)
< { N 1} _ N1t
NATT T T N 2

Hence Xy=1/(N-+1). This compares with an expected waiting time of 1/(2N)
hours if the buses were equally spaced throughout each hour.

Time of
waiting

L 1—ay

x=0 1 X XN 1
Time of arrival at stop

F1a. 2.

In the case of N independently operated buses, each with an N-hourly ser-
vice, the expected waiting time is N/(NN-1), compared with % hour for the cor-
responding regular service. Hence, in the limit N— o, a completely random ser-
vice leaves passengers waiting just twice as long as a regular service using the
same number of buses.

To end with a more cheerful thought: provided only that an intending pas-
senger is on a bus route, the time he will most probably have to wait for a bus
is zero, or very nearly, since on some routes, at some times, there is a continuous
procession of buses and virtually no waiting during these times.

A REAL-LIFE APPLICATION OF MATHEMATICAL SYMBOLISM
R. M. REDHEFFER, University of California at Los Angeles

Much of the power of any mathematical notation is due to its ferseness, a
quality that is well known to mathematicians and is constantly used in their
researches. Not so well known, perhaps, is the ready applicability of this same
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same number of buses.

To end with a more cheerful thought: provided only that an intending pas-
senger is on a bus route, the time he will most probably have to wait for a bus
is zero, or very nearly, since on some routes, at some times, there is a continuous
procession of buses and virtually no waiting during these times.

A REAL-LIFE APPLICATION OF MATHEMATICAL SYMBOLISM
R. M. REDHEFFER, University of California at Los Angeles

Much of the power of any mathematical notation is due to its ferseness, a
quality that is well known to mathematicians and is constantly used in their
researches. Not so well known, perhaps, is the ready applicability of this same
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quality to the communication problems of everyday life. In illustration of this
remark, we present the following fundamental

THEOREM. The expression
0.5 rd/B

describes what happens when the highway is covered with certain members of the
order Coleoptera.
For proof, write the expression in the form
1
0.51’ =, . ?
aB/(da)
and consider the fraction forming the denominator. Now, a B is pronounced “a B

tildah” and hence, in the formula a B/(da) the last syllable of the “tilde” cancels
with the “da” of the denominator. That is,

M

aB
2 —— = a beetle.
da

Substituting (2) in (1) yields the first member in the following chain of equali-
ties; the others should cause no difficulty:

1

0.57 _aB/(da)

= 0.57 one over a beetle

= 0.57 wun over a beetle

= 0.5w run over a beetle

= 0.5 double (you run over a beetle).
An obvious simplification gives the final answer,

You run over a beetle!
when we set y=Y and take the factorial.
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AN ELEMENTARY PROOF OF A THEOREM OF HERSTEIN
JIANG LUH, Indiana State College

Let R be a ring and let Z be its center, i.e., the set of all elements of R which
commute with every element of R. It is well known that Z is a subring of R.

In 1951, Herstein (e.g., [2, 3]) proved that if, for each xER, there exists
an integer n(x) >1 such that x*®+4x&Z, then R is commutative. This result
was established by essential use of Zorn’s lemma. The author was faced with
the problem of presenting this celebrated result to undergraduate students in
their first course in abstract algebra. The following approach was used: First a
reference was made to a recent paper in which Raymond and Christine Ayoub
[1] have supplied a simple proof of the following

LemMA 1. If, for every xER, x?*+xEZ, then R is commutative.

For easy reference, we exhibit their proof here.

Proof of Lemma 1. For any x, y&ER, (x+y)2+(x+y) ER. By expanding and
noting that x24x&ER, y2+yER, we have xy+yxEZ. Hence, x(xy-+yx)
= (xy+yx)x, or x2y=yx2 Thus, x2€Z and therefore xEZ.

An elementary proof of the Herstein theorem when #(x) =3 for every x &R
was then presented and is exhibited here.

THEOREM. If ¥*+xEZ for every x &R, then R is commutative.
We begin with
LeMMA 2. If «®+x & Z for every xER, then 2x&Z for every xS R.

Proof. Let x and vy be arbitrary elements of the ring R. Then (x+y)*4 (x+9)
€Z, and (x—y)*+(x—y)EZ. Expanding and noting that both x*+x and y*+y
lie in Z, we have x*y-4-xyx+yx?+y2x+yxy+xy?EZ, and x2y+xyx+yx?—yx
—yxy—xy*CZ. Thus, their sum, 2(x%y+xyx+yx?), lies in Z. Hence x[2(x2y
+xyx+yx?) | = [2(x2y+xyx+yx2) [x, or 2x3%y=2yx%. This implies that 2x*€Z,
so that 2x=2(x*+x) —2x*EZ.

LeMMA 3. If x3+x & Z for every xER, then «®+x*EZ for every xER.

Proof. Let x be an arbitrary element of R. Then (x2-+x)*+4(x2+x)EZ, or
x84+ 3x%+ 3xt+x2+x2+x & Z. Using the fact that x°+x2EZ and that x*+xEZ,
we have 3(x*+x*) &Z. But, by Lemma 2, 2(x’+x*) €Z. Hence, x*+x*CZ.

LemMA 4. If x3+xEZ for every xCR, then x*+x°C Z for every xS R.

Proof. Let x be an arbitrary element of R. By Lemma 3, (x24x)%+ (x2+x)4
€Z, or x'045x°+10x8+10x7 4 558 +o° +x8 -+ 457+ 68 +4x5 +x*E Z. Since, by
Lemma 3, x1°4-x3c Z, x°+x*&Z, and by Lemma 2, 10(x8+x7) +4(x"+x5) 4+ 6x°
& Z, we obtain that 5(x°+x%) &Z. Using Lemma 2 again, we have x°+x&Z.

Proof of the theorem. For arbitrary x &R, x2+x = (x8+x2) + (x° +x3) — (x°+x°)
— (x®*+x) +2x. According to Lemma 2 and Lemma 4, we see that x2+x&Z.
Hence, by Lemma 1, R is commutative.

Remark. 1t would be interesting to prove Herstein theorem using elementary
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methods for other values of #. However, some new technique seems to be needed
to take care of all cases.

References
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2. I. N. Herstein, A generalization of a theorem of Jacobson, I, Amer. J. Math., 73 (1951)
756~762.

3. N. Jacobson, Structure of rings, Amer. Math. Soc. Collog. Publ., New York, 37 (1956).

COMMENT ON “NOTE ON CONSECUTIVE INTEGERS WHOSE SUM
OF SQUARES IS A PERFECT SQUARE”

J. A. H. HUNTER, Toronto, Ontario

Stanton Philipp’s most interesting note (this MAGAZINE, 37 (1964) 218-220)
was unfortunately marred by a numerical mistake in the treatment of #=457.
Having derived y2—45742= —19-916, he concludes:

From the simple continued fraction for /457, we can calculate that 5835316232
—457:27296458%2= —19; by direct trial, we find that 5644%—457-2642=916. It
Jollows that (15) has the solution

5644583531623 - 457-264-27296458
264-583531623 + 5644 -27296458.

In fact, 28222—457-1322=916. Furthermore, since 916 contains 22, one
would solve Y2—457W?2= —19-229. Since 14112—457-662=229, the obviously
more manageable solution of this will be:

Y = 1411-583531623 — 457-66-27296458 = 47353857
W = —66-583531623 4 1411-27296458 = 2215120.

I

¥

U

I

Also, that reference to “direct trial” seems open to mild criticism. We have
V2—457TW2=229, so Y7=229=1600 (mod 457), hence Y;=457k+40, which
gives W2=457k2+ 80k -+ 3. Immediately, with k=3 we have the acceptable mini-
mal solution W;=66. This seems preferable to tedious “direct trial.”

A NEW TWIST TO AN OLD PROBLEM
Donarp V. WEYERS, Bowling Green State University

In the usual proof of the irrationality of /2 by contradiction it is assumed
that v/2=a/b where a and b are relatively prime integers with 5><0. From 252
=a? we get that 2 is a factor of a2, etc. It may also be observed, however, that
b|a-a. Now apply the well-known theorem that if (a, ¢) =1 and c| ad, then ¢ Id
to conclude that bI a. Hence, since (a, b) =1 it follows that =1 and a?=2 Since
12=1 and a2>2 for a> 1, we have a contradiction.
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A NOTE ON DINI’'S THEOREM
SHAW MONG, National Taiwan University, China

A general form of Dini’'s theorem states that: If a monotone (uniformly)
sequence of continuous real-valued functions { f:} is defined on a compact space X
and converges pointwise to a continuous real-valued function f, then it con-
verges uniformly to f.

We shall give a proof of this theorem under a somewhat weaker monotony
condition on {f:}.

TrEOREM (Dini’s theorem). If X is a compact space, and if { fi} is a sequence
of continuous real-valued functions defined on X, which converges pointwise to a
continuous real-valued function f, and if for each point of a dense subset of X,
{ fi(a)} 1=1, 2, + -+ 15 @ monotone sequence, then { f;} converges uniformly to f.

The following lemma will enable us to prove this theorem:

LeEMMA. If X is a topological space, and { fi} 1S a sequence of continuous real-
valued functions defined on X, which has the following property on a dense subset A
of X: for each a S A, either all {fi(a)} i=1,2, - - -, are nonpositive or all are non-
negative, then { f;} also has that property on X.

Proof.Let P = {p € X|fi(p) 20,i=1,2,---}, N = {qg € X|filg) <0,
1=1,2,--- } Then A CPUN. The lemma is proved if we can show that for
each x&X=xEP\UN. This is indeed true, for otherwise we obtain a contradic-
tion: If x e P\UN, then there is a pair of positive integers j, k, such that f;(x) >0
and fi(x) <0. Since f; and fi are continuous, there exists, for any integer #,
a neighborhood U,(x), such that ]fj(x) —f,(x’)] <1/m, ]fk(x) —fk(x’)l <1/n
whenever x' & U,(x). By the denseness of 4, there always exists an ¢, &4, such
that a,& U,(x). For n=1, 2, 3, - - - we obtain a sequence {a,.}EA such that

1 1
]fz(x) —fj(dn)] <;) Ifk(x) —fk(dn)l < ;y forallw=1,2,---.

Since {a.}=({a.}NP)U({a.}NN), either {a,} NP or {a.} NN is a sub-
sequence of {@.}. Let {as} P ={by, by, - - - } (or {@a}N={by, by, - - - }).
Then f;(x), fx(x) are the limits of the nonnegative (resp. nonpositive) sequences
{£:(60), fi(ba), - - - s {F @), Fu(2), - - - } respectively, and therefore f;(x) =0,
fu(x) =0 (or f;=0, f, =0, respectively). This contradicts the assumption that
fi(x) >0, and fi(x) <O0.

Proof of theorem. Let g;=f;—f:,1; then g; is also a continuous real-valued
function on X. Moreover, the sequence {gi} satisfies the condition of the pre-
ceding lemma. Hence, for each x of X, either all { gi(x)} are nonnegative or all
are nonpositive, i.e., { fi(x)} is a monotone sequence for each x of X. If { fi(x)}
is an increasing sequence (or decreasing respectively), then f(x) =f;(x) for all
i=1, 2, -+ (or f(x) <fi(x) respectively). In both cases, it is true that |f(x)
—fu@)| S|f&) —fi(®)| for all i 2j.

The following part can be found in any textbooks dealing with the classical
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form of this theorem: For given ¢>0 and each x& X, there is a positive integer

7, such that as n=n,, ] fx)— f,.(x)[ <¢/3. Since f and f,, are continuous, there
is a neighborhood U(x) of x such that

| 7(2) — 7| <—;—, | Fua®) = fual®) | <§, for ' € Ux).

By assumption, X is compact. Hence, there are a finite number of points x;in X
such that the U(x;) cover X. Now let n, be the maximum of {nx,.}. Then for
any x in X, x belongs to some U(x;); as n =n,, we obtain

[7) = fu@) | S @) = fau@ | S @) = 7@ | + | 7@) — fare(d) |
€ € €
+ lf":;(xi) —fn,,.(x) l < —3— -+ _3- + _3_ = ¢,

ie.,, {fi} converges uniformly to f.

A FALLACY IN DIFFERENTIABILITY
ALBERT WILANSKY, Lehigh University

The following argument, which at first glance seems to prove that every
differentiable function has a continuous derivative, is offered as a challenge for

undergraduates.
Let f be differentiable. Fix x. For k0, let

_fe B — i@

p —f'().
Then
1) flx 4+ &) = f(x) + kf (%) + ke, e—0as k—0.
In (1) take successively x=0, k=2h; x=0, k=h; x=Fk=h. This yields
(2) f(2h) = f(0) + 24f'(0) + 2hex
) f(r) = f(0) + 4f'(0) + he
4) f2h) = f(h) + hf' (k) + hes.
Solving (4) yields

f2r) — f(h) B

f'() =

€3.

h

Substitution from (2), (3) yields /(&) =f"(0) +2e, —e2—es. Hence f/(h)—f'(0) as
20,
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TRIPLE PRODUCT TABLES

R. A. JacossoN, South Dakota State University

Many times an abstract binary operation in a set .S is defined by means of
a product table. Most properties of the system, with the exception of associativ-
ity, are clearly displayed in such a table. In this note, we wish to present a quick
and simple method for constructing a triple product table so that the associative
properties of the system are also readily visualized.

” a b c

a a c b
b c b

c b b c
TABLE 1

Since the method is easily generalized, we shall restrict our discussion to the
set {a, b, ¢} with products as given in Table 1. The Triple Product Table is
constructed as follows: Place each element of the set in row one. Directly below
each element, y, in the top row we enter both the row and column associated
with that y as found in Table 1. These are in reality the products yz and xy,
respectively. Columns (rows) from Table 1 are then inserted in the bottom row
of boxes, the columns (rows) being the ones associated with the entries in the
single row (column) immediately above. For example, the first square in the
final array contains the columns found below the elements a, ¢, b, respectively,
in Table 1. Similarly, the last square of the array contains the rows to the right
of elements b, a, ¢, respectively, in Table 1. The bottom array thus displays
all triple products x(yz) and (x¥)z in adjacent boxes so that associativity can be
readily checked. For example, the triple products c¢(ab) and (ca)b are found in
the third row and second column of the two left most boxes in the final array. It
is evident that in our system only the triples axa, xxx, ccx, cba, and cbb are
associative.

a

b ¢ a ¢ b b ¢ a b b ¢ c ¢ b c b a
c a b b b ¢ a b ¢ c b a b b a a ¢ b
b ¢ b c b a c b b c b a b b ¢ b b ¢

x(az) (xa)z x(bz) (xb)z x(c3) (xc)z

TrirLE ProDUCT TABLE
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A PROOF THAT WOULD PLEASE N. D. KAZARINOFF
C. StaNLEY OcIiLvy, Hamilton College

Let fixed circles of radius m and %, m>n, with centers at O and Q respec-
tively, be internally tangent at 7. Let a third circle with center P be internally
tangent to the larger fixed circle and externally tangent to the smaller. Then
OP+PQ=m+n, constant for all P. Thus P describes an ellipse with foci at
Oand Qand a vertex at T". The semi-major axisa = (m-+n)/2,c=300= (m—mn)/2,
and therefore the semi-minor axis b= +/(a?—c?) = v/ (mn).

All this is well known. (See for instance Amer. Math. Monthly, 54 (1947)
547.) What has apparently not been mentioned is that it constitutes an elegant
if somewhat roundabout proof that the arithmetic mean of two unequal positive
numbers is always greater than their geometric mean: (m-+n)/2> /(mn).

BOOK REVIEWS

EpiTEp BY DMITRI THORO, San Jose State College

Materials intended for review should be sent to: Dmatri Thoro, Department of Mathe-
matics, San Jose State College, San Jose, California 95114.

Exploring Mathematics on Your Own. Recent titles in a series of 18 booklets,
64 pages each. Curves in Space, Probability and Chance, and Logic and Rea-
soning in Mathematics. By Donovan A. Johnson. Geometric Constructions,
Basic Concepts of Vectors, and Finite Mathematical Systems. By M. Scott
Norton. Webster, St. Louis, 1963, $.92 each (paper).

These booklets are admirably assembled, whetting the mathematical ap-
petite with a soupgon of selected topics. They are most appropriate for begin-
ning college students, potential teachers, and high school mathematics club
advisors. Some of the gravamina follow. The word numeral should be substi-
tuted for number. There is no mention of the Fibonacci triangle in Probability
and Chance. Notably absent also, is any discussion of Francis Galton’s work on
probability; no distinction was made between Poisson distribution and normal
distribution.

In Finite Mathematical Systems, the presentation of Abelian groups relates
quite well to investigations of mathematical learning presently undertaken,
notably that by Z. P. Dienes of the Adelaide Mathematics Project in his logic
for young children. No triangle-trapezoid-triangle was given in Geometric Con-
structions. Unusual notation was used in Finite Mathematical Systems; the ? was
used in lieu of the equivalence notation.

In general, the definitions were concise, the presentation straightforward.
Of particular merit were the sections on finite geometries, Euler circles, and
Peano postulates. The only typographical error I was able to detect was
“galatic” for “galactic” on page 14 of Curves in Space.

L. V. Rocers, Pinewood School, Los Altos Hills, Cahforma
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Continued Fractions. By C. D. Olds. New Mathematical Library, Random
House, New York, 1963. 162 pp. $1.95.

The subject of continued fractions is allotted a chapter in many books on
the theory of numbers. The presentation in such works is condensed and, per-
haps because of space limitations, rather restricted. This book by Olds, on the
other hand, not only gives an unhurried development of the subject but also
explores many ramifications of this significant topic. In addition, the book
abounds in historical references giving the sources of the ideas elaborated. The
prerequisites for the study of this monograph are kept to a minimum, so that
the subject of continued fractions is made available to the ablest of the high
school seniors.

Chapter 1 gives the expansion of a rational number as a simple continued
fraction. First a wide variety of examples is provided to give the reader a clear
picture of the method involved in the expansion. This is followed by a careful
presentation of the algebraic structure of the continued fraction in the general
rational case. Several properties of convergents, and differences of consecutive
convergents, are proved in detail; others are left to the reader as exercises.

Chapter 2 offers an application of continued fractions to the solution of the
Diophantine equation ax+by=c, where @, b, and ¢ are integers. This equation,
if it has any solutions in integers, can be related to an equation of the form
Ax-+4By=1 with relatively prime coefficients 4 and B. The general solution of
this equation is readily obtained from any one solution, and one solution can be
written at once from the second last convergent of the continued fraction expan-
sion of 4/B. The method is satisfying because it is constructive: an actual solu-
tion is obtained, not just the information that a solution exists.

Chapter 3 extends to irrational numbers the method of expansion into con-
tinued fractions. This necessitates a discussion of limiting processes, of course,
and the author does an excellent job of explaining this for his prospective
audience of not-too-sophisticated readers. And if the reader should find the
analysis a little on the abstruse side, there is also provided the geometric inter-
pretation of Felix Klein. In brief, this is the polygonal approximation to the
line y =ax by the points (p, ¢.) derived from the convergents $,/g, to the irra-
tional number «.

Chapter 4 explores the periodic continued fraction expansions. It is estab-
lished that these pertain to quadratic irrational numbers. This theory is applied
to the Pell equation x2— Ny?= 41 by use of the continued fraction expansion of
v/N. The idea is to use the expansion to obtain a smallest positive solution
%0, ¥o and then to derive all solutions from the powers of xo+¥ov/N.

Chapter 5 has the title “Epilogue.” The topic is the approximation of irra-
tional numbers by rationals, the basis for such a study having been given in
Chapter 3. Without giving all proofs, the author leads up to the theorem of
Hurwitz, the Markoff chain, and asymmetric approximations. The theorem of
Hurwitz states that for any irrational « there are infinitely many rationals k/k
such that Ia—h/k| <(+/5k%)~1, and furthermore that 4/5 is the best possible
constant. This result is a gateway to the theory of Diophantine approximations.
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This book opens up the theory of continued fractions to a wide class of read-
ers who would find the advanced treatises forbiddingly inaccessible. Excep-
tionally lucid and well-written, it takes its place among the best expository
mathematical works, those that are not only clear but also reliable.

Ivan NI1veN, University of Oregon

Basic Topics in Mathematics. By John Riner. Prentice-Hall, Englewood Cliffs,
N. J., 1963. 279 pp. $6.95.

Stated objective: “imparting ... an awareness of the nature of mathe-
matics” by “...a chance to do a little mathematics.” And, indeed, little
mathematics is done. The initial flame of rigor flickers warningly on page 6 and is
out by page 61. Roughly 70 per cent of the exercises are routine; less than half
the remaining contribute to the theories presented.

Chapter titles belie their contents: Algebra means the reals as an ordered
field, Vector Spaces means R? and R3, Limits means linear polynomials (the one
nonlinear proof, x2—9 as x—3, is pure magic to the tyro) and infinite sequences.
Occasionally the author reads the reader’s mind (“The idea . . . in most readers’
minds . . . ”) as a point of expository departure, befuddling one not equipped
with the right wrong idea. Once a distance is defined in terms of an undefined
distance with no hint that the two are conceptually and, maybe, numerically
different, and the same symbol is used for both. A well-defined set is so defined
that “the collection of all people now living who will be president of the United
States after 1961” is not well-defined (although, I presume, it will be eventually).
Metric spaces are used as the setting of limits, but no function (except the dis-
crete one) is shown to be a metric.

That this book is written in the latest mathematico-educational jargon and
over-burdened with symbolism doesn’t prevent its being a cook-book. There are
some new recipes, but the old ones are fewer and harder to follow.

There are many typographical and some logical errors.

PavuL YEAROUT, Brigham Young University

Basic Statistics. By Thomas E. Kurtz. Prentice-Hall, Englewood Cliffs, N. J.,
1963. $7.50. '

The author has written this book to follow a semester of the Kemeny, et al.,
treatment of probability and a semester of calculus. He asserts in his introduc-
tion that “we have our cake and eat it too”; i.e., the book has mathematical
content with this limited prerequisite. Bayesian statisticians and believers of
adages should bet that he has not been completely successful.

The book gives the impression of having been hastily written and poorly
edited. There are a number of general principles which are meaningless or have
counter-examples, e.g., “the greater the ‘spread’ of the values of a random vari-
able, the greater the variance, and vice versa.” The following quotations should
adequately demonstrate the need for immediate revision. All but the second are
displayed in boxes. “A random variable is a function that assigns to each element
in the sample space a number,” (p. 70). “We may consider the standardized
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This book opens up the theory of continued fractions to a wide class of read-
ers who would find the advanced treatises forbiddingly inaccessible. Excep-
tionally lucid and well-written, it takes its place among the best expository
mathematical works, those that are not only clear but also reliable.

Ivan N1veN, University of Oregon

Basic Topics in Mathematics. By John Riner. Prentice-Hall, Englewood Cliffs,
N. J., 1963. 279 pp. $6.95.
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matics” by “...a chance to do a little mathematics.” And, indeed, little
mathematics is done. The initial flame of rigor flickers warningly on page 6 and is
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the remaining contribute to the theories presented.
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form of a random variable as being the same as the original random variable
but with its values transformed,” (p. 97). “An estimator is a random variable
that is used for providing an estimate,” (p. 104). “An estimate is the observed
value of an estimator,” (p. 104). “A statistic is a random variable that depends
only on the observed sample,” (p. 122). And then on page 152 matrix-valued
random variables arise without comment.

Still, a revised version might be quite useful. Honest theorems generally
have complete and careful proofs. Expected value is defined as a sum over the
sample space with other forms given as theorems. This makes it possible, of
course, to avoid the difficulties usually encountered in elementary books. Infer-
ence receives careful treatment; nonparametric methods are emphasized, includ-
ing some of Tukey’s work that has not been generally available.

H. E. REINHARDT, Montana State University

Convex Figures and Polyhedra. By L. A. Lyusternik. Translated from the Russian
by T. Jefferson Smith. Dover, New York, 1963. x-+176 pp. $1.50.

Considering the importance of, and the extent of current interest in, the
study of convex figures, there is a lamentable paucity of textual material on the
subject in English. Very welcome, therefore, is this English translation of the
famous 1956 Russian work by Lyusternik.

The first three chapters, with a little tough sledding in Chapter 3, are reada-
ble by a good high school student of mathematics. Here one finds, in addition
to basic concepts, elementary proofs of Barbier’s theorem on convex figures of
constant breadth, the polygonal case of Minkowski’s theorem on maximal
centrally symmetric bodies on an integral lattice, Cauchy’s polyhedral theorem,
and Steinitz's fundamental theorem of the theory of polyhedra. Many elegant
allied results are stated without proof. Chapter 4, which is more difficult to read,
concerns itself with linear systems of convex bodies, planar sections of convex
bodies, the Brunn-Minkowski inequality and its consequences. Chapter 5, which
utilizes the material of Chapter 4 and which in the Russian edition was written
by A. D. Alexandrov, contains a lengthy but elementary proof of the remarkable
theorem of Minkowski that a convex polyhedron is determined by the areas
and directions of its faces. The Minkowski theorem is established as a corollary
to a more general theorem of Alexandrov concerning a condition for two convex
polyhedra to be equal and parallel. The sixth, and concluding, chapter of the
book is concerned with regular polyhedra, semi-regular convex polyhedra, the
isoperimetric problem, chords of arbitrary continua, Blichfeldt’s theorem, and
a number of other related topics.

It is interesting to note here that Lyusternik’s book has essentially little
overlap with the fine Convex Figures by Yaglom and Boltyanskii (translated
into English by P. J. Kelly and L. F. Walton, and published by Holt, Rinehart
and Winston in 1961). These two books taken together furnish an excellent
elementary introduction to the study of convex figures and bodies in general,
and to the contributions of the Russian school in particular.

Howarp EvEs, University of Maine
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Geometric Dissections. By Harry Lindgren. Van Nostrand, Princeton, N. J.,
1964. ix+165 pp. $4.95.

Dissection theory is a subject of great theoretical and recreational interest,
for it plays a fundamental role in a rigorous development of area and volume
and it also yields a seemingly inexhaustible supply of attractive and challenging
puzzles. The work under review is devoted entirely to the recreational aspect
of the subject. It is probably the only book-length treatment to be found in any
language, and it is written with charm and skill by an expert dissectionist whose
contributions have appeared in the puzzle corners of magazines and newspapers
the world over.

Not all facets of the recreational aspect of dissection theory are considered,
for the author pretty much limits himself to the problem of dissecting one figure
into another with as few pieces as possible. Though the minimal dissection
problem has been solved with certainty in only a very few instances, it seems
unlikely that some of the ingenious systematic approaches devised by the
author can be improved upon. The book is easy to read, with appeal to both
amateur and professional. It contains over 400 dissection puzzles (mostly planar,
but some spatial), a set of 56 dissection problems on which the reader is invited
to test his strength before peeking at the solutions in the back of the book, some
17 pages of excellent drawings of polygons, strips, and tesselations that the
reader can carefully trace and use in experimental fashion, and some tables of
numerical dimensions for the convenience of those who wish to construct accu-
rate drawings. The book is profusely and elegantly illustrated, and can without
doubt furnish a puzzle enthusiast endless hours of enjoyable pursuit.

Howarp EvEs, University of Maine

BRIEF MENTION

A History of Geometrical Methods. By Julian Lowell Coolidge. Dover, New York, 1963.
xv-+4455 pp. $2.25.

Republication of the work first published by the Oxford University Press in 1940,

The Mathematics of Great Amateurs. By Julian Lowell Coolidge. Dover, New York, 1963.
vii-+210 pp. $1.50.

Republication of the work first published by the Oxford University Pressin 1949.

A History of the Mathematical Theories of Attraction and the Figure of the Earth. By 1.
Todhunter. Dover, New York, 1963. 508 pp. $7.50.

Republication of the work first published in 1873,

A Manual of Greek Mathematics. By Sir Thomas L. Heath. Dover, New York, 1963.
552 pp. $2.25.

Republication of the work first published in 1931,

Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections.
By Karl Friedrich Gauss. Translated by Theoria Motus. Dover, New York, 1963.
326 pp. $2.95.

Republication of the work first published in 1857,

Mathematics. By David Bergamini and the editors of Life. Time Inc., New York, 1963.

200 pp. $3.95.
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Philosophy of Mathematics: Selected Readings. By Paul Benacerraf and Hilary Putnam,
editors. Prentice-Hall, Englewood Cliffs, N. J., 1964. vii4+536 pp. $8.95.

This extensive collection of essays by philosophers and mathematicians presents
many points of view on the nature of mathematics. There are four parts: Foundations of
Mathematics, The Existence of Mathematical Objects, Mathematical Truth, Wittgen-
stein on Mathematics.

An Introduction to the History of Mathematics, revised edition. By Howard Eves. Holt,
Rinehart, and Winston, New York, 1964, xvi+439 pp. $7.95.

Philosophical Problems of Space and Time. By Adolf Grunbaum. Alfred A. Knopf, New
York, 1964. 450 pp. $10.75.

Applied Calculus. By L. J. Adams. Wiley, New York, 1963. ix+278 pp. $5.95.

Basic Mathematics for General Education. 3rd ed. By Harold C. Trimble, E. W. Hamilton
and Ina Mae Silvey. Prentice-Hall, Englewood Cliffs, N. J., 1963. xi-+332 pp. $6.00.
Revision of the 1955 edition. '

The Japanese Abacus Explained. By Y. Yoshino. Dover, New York, 1963. xiii+ 240 pp.
$1.25.

Republication of the original 1937 edition with a new introduction by Martin
Gardner.

Advanced Abacus: Japanese Theory and Practice. By Takashi Kojima. Charles E, Tuttle,
Rutland, Vermont. 159 pp. $2.25.

A sequel to the author’s The Japanese Abacus: Its Use and Theory.

Fallacies in Mathematics. By E. A. Maxwell. Cambridge University Press, New York,
1963. 95 pp. $.95.

First paperback edition of the 1959 publication.

ANSWERS

A354. The greatest angle is subtended at the point of contact of the smaller
of two circles through A4 and B which touch the given circle internally. The
other points on the same side of AB give smaller angles as they are outside the
touching circle, while the points on the other side give smaller angles because
they are outside the larger touching circle.

A355. Multiply the product by (1/2)(32"—1) or 1 and obtain (1/2)(32***—1) since
(32" —1)(32"+1) = (32'—1), (32'—1)(32'+1) = (32" —1), and so on.
In general, if any base x>1 were used instead of 3, the product would be
n+1

[1/( = D] = 1).
A356. The leg of a right triangle is shorter than the hypotenuse. Consider the
right triangle with legs of length 1 and «x.
A357. Let S(1)=2, S(2)=3, - - -.
Then since S(a) =2+ >.%¢ ¢ and S(a) —S®) = 2 %t 4 for a>b, we have
S(501) =125252 and S(501) —.S(500) =500. :

A358. In any base B, 2(297) <2(300) =600. 600 <792 <800=4(200) <4(297).
Hence 792 =3(297) so that 7B2+9B+42=6B2+427B-+421 or B2—18B—19=0.
Rejecting the negative root leaves B=19.

(Quickies on page 124)
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PROBLEMS AND SOLUTIONS
Ep1teEp BY ROBERT E. HORTON, Los Angeles City College

Readers of this department are invited to submit for solution problems believed to be new
that may arise in study, in research, or in extra-academic situations. Proposals should be ac-
companied by solutions, when available, and by any information that will assist the editor.
Ordinarily, problems in well-known textbooks should not be submitted.

Solutions should be submitted on separate, signed sheets. Figures should be drawn in
India ink and exactly the size desired for reproduction.

Send all communications for this department to Robert E. Horton, Los Angeles City Col-
lege, 855 North Vermont Avenue, Los Angeles, California 90029.

PROPOSALS
579. Proposed by David L. Silverman, Beverly Hills, California.

“If two of my children are selected at random, likely as not, they will be of
the same sex,” said the Sultan to the Caliph. “What are the chances that both
will be girls?” asked the Caliph. “Equal to the chance that one child selected at
random will be a boy,” replied the Sultan. How many children did he have?

580. Proposed by Joseph Arkin, Spring Valley, New York.

Is a solution in integers possible for the equation (¢ —a—b)*=24 abc, where
a, b and ¢ are not zero?

581. Proposed by Joseph L. Teeters, Baker University, Kansas.
If a complex number a-+bs is defined

I. to be positive when (i) 6>0 or (ii) b=0and ¢ >0
II. to be zero when b=0 and a=0, and
IIL. to be negative when (i) b<0 or (ii) b=0 and a <0

and if 4 <B (4, B being complex) means that B— 4 is positive, then prove or
disprove the following:

1. If 4, B, C are complex numbers, and 4 <B, then A+C<B+C.

2. If 4, B, C are complex numbers, and 4 <B, and C is positive, then
AC<BC.

582. Proposed by Charles W. Trigg, San Diego, California.

A regular octahedron, edge e, is cut by a plane parallel to one of its faces.
Find:

(a) the perimeter, and
(b) the area of the section.

116
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583. Proposed by Kaidy Tan, Fukien Normal College, Fukien, China.

Solve a rational triangle (i.e., the lengths of each side is a rational number)
so that the altitude, the median, and the angle bisector on one side are rational
numbers.

584. Proposed by J. Barry Love, Eastern Baptist College, Pennsylvania.
Sum the series for |x| >1,
! + 2 + : + i +
x+1 2241 2x4+1 241

585. Proposed by J. M. Howell, Los Angeles City College.

A population consists of three types of objects. Let P, Q and R represent the
probability of drawing one of each type on a single draw, P4+Q+R=1. A
sample of size # is drawn with replacement, and p, g, » represent the fractions
of these three types of objects found in the sample. The mean and variance of
p-+r would be P+R and (P+R)Q/n, since this would be a binomial distribu-
tion. What are the mean and variance of p—7?

SOLUTIONS

Late Solutions

Claudia Abbott, University of California at Riverside: 551. John A. Burslem, St.
Louis University: 551, 552, 553, 554, 556. Larry Hoehn, Perryville, Missouri: 554.
Abraham Karen, Teaneck, New Jersey: 551, 552, 554, 556, 557. F. W. Lovsin,
Brantford, Ontario, Canada: 545. M. G. Murdeshwar, University of Alberta:
538, 539, 540, 542, 543, 544. Shri K. C. Sharma, Institute of Armament Tech-
nology, Dapodi, Poona, India: 545, 550. Polly Spital, California State Polytechnic
College: 544. Sidney Spital, California State Polytechnic College: 538, 539, 540,
542, 543, 544, 545, 547, 548, 549. Sister M. Stephanie, Georgian Court College,
New Jersey: 552, 544. Howard L. Walton, Falls Church, Virginia: 544.

Comment on Problem 516
516. [May, 1963 and January, 1964 ] Proposed by Maxey Brooke.

Comment by G. H. L. Buxton, National Engineering Laboratory, East Kilbride,
Lanarkshire, Scotland.

The problem is indeterminate and the solution published is incorrect.

From statements 1, 3, 4 and 6, D is not Adams, McCall, Jones or Williams,
and from 4 and 5, not Smith. Therefore, D is Brown. This leaves X or T for
Adams or Williams, and from 3, X is Adams and T is Williams. Therefore from
5, Q is Smith and Y is McCall, and the murderer is either Smith or McCall.

Condition 2 is extraneous as stated. If Condition 2 were replaced by “The
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murderer has no relatives,” or Condition 5 replaced by “ . .. sits to the left of
the murderer,” the problem would be determinate and the solution given cor-
rect.

Editor's note. The difference between this interpretation and that of all but
one of the other solvers of this problem apparently lies in the interpretation of
Condition 4. If a person is included in the set of those who do not sit next to
him, then Buxton’s solution follows. If he is excluded from the set, the other solu-
tions hold.

Errata

In the solution to Problem 489, Page 135, of Volume 36, Number 2, Novem-
ber, 1963, all the expressions appearing as a+/b/c should read (a+/b) /c.

Fair Game

558. [September, 1964] Proposed by David L. Silverman, Beverly Hills, Cali-
fornia.

Players 4 and B each has a die, which he places as he sees fit on a table top,
without seeing his opponent’s play. Simultaneously, the two dice are shown,
and the total of the upper faces determines the winner. A wins if the total is a
prime; B wins otherwise. Over a long period of time, whom does the game favor?

1. Solution by Maxey Brooke, Sweeny, Texas.

If both play at random, 4’s odds are 15/36.
If 4 plays only 1’s and B plays at random, A’s odds are 2/3.
If A plays only 2’s and B plays at random, 4’s odds are 1/2.
If 4 plays 3, 4, 5 or 6 and B plays at random, 4’s odds are 1/3.
. Hence A’s optimum game is to play 1 or 2 at random. If B then plays at
random A’s odds are 7/12.
6. But B’s optimum game will be to play 3, 4, 5, 6 at random. -
If both play their optimum game, A’s odds are 1/2 and the game favors
neither.

e

1. Solution by W. W. Funkenbusch, Michigan Technological University.

We assume that the dice used are regular polyhedra. We eliminate the tetra-
hedron since it does not have an “upper face” when placed down. Elementary
game theory shows that the game is fair if the die is a cube, otherwise the game
favors B.

More specifically if the payoff is 1 if 4 wins and —1 if B wins, we find:

(a) for cube: A’s mix consists of equal parts of 1 and 2. B’s mix consists of
equal parts of 3 and 4. The game value is 0.

(b) for octahedron: A’s mix consists of equal parts of 1, 2, 3, 4, 5 and 6. B's
mix consists of equal parts of 3, 4, 5, 6, 7 and 8. The game value is —1/3.

(c) for dodecahedron: A's mix consists of equal parts of 1, 2, 3, 4, 5 and 6.
B’s mix consists of equal parts of 3, 4, 5, 6, 7 and 8. The game value is —1/3.

(d) for icosahedron: A's mix consists of unit parts of 1, 2, 5, 6, 11 and 12, and
double parts of 3 and 4. B’s mix consists of unit parts of 13, 14, 15, 16, 19 and
20. and double parts of 17 and 18. The game value is —1/2.
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Also solved by Leon Bankoff, Los Angeles, California; Merrill Barneby, University of North
Dakota; Dermott A. Breault, Sylvania ARL, Waltham, Massachusetts; Jokn A. Burslem, St. Louis
University; Ralph L. Carmichael, NASA, Moffett Field; Harry M. Gehman, SUNY at Buffalo,
New York; Carl Harris, Polytechnic Institute of Brooklyn; J. A. H. Hunter, Toronto, Ontario,
Canada; Robert F. Jackson, University of Toledo; Richard A. Jacobson, South Dakola State Univer-
sity; Robert Lera, St. Mary's College, California; Robert Martel, St. Mary's College, California;
Prasert Na Nagara, Bangkok, Thailand; Benjamin Sharpe, SUNY at Buffalo, New York; J. S.
Vagder, Defence Research Board of Canada; and the proposer.

Several solvers imposed the assumption that the players would use the numbers which ap-
peared as the dice were rolled: Len Bertain, St. Mary's College, California; Ralph L. Carmichael,
Moffet Field, California; Sidney Spital, California State Polytechnic College; C. W. Trigg, San Diego,
California; Ralph N. Vawter, St. Mary's College, California; and Benjamin B. Winter, Autonetics,
Anaheim, California.

Improper Integral
559. [September, 1964] Proposed by Gilbert Labelle, Université de Montréal.

Show that
f°° dx 1
o 14 &7 "~ sin1

Solution by Raymond E. Whitney, Lock Haven State College, Pennsylvania.
Consider I= [dx/(1+x'7); pE(0, 1) or its equivalent, g=1/p,

j;wdx/(l + x9); gE(1, o).

With the transformation xV/?=x2=1y,
I= pf wldu/(1 + u) = 1/qf w1 du/(1 + u).
0 0

Now the given integral is a well-known contour integral (4 Course of Modern
Amnalysis, Whittaker & Watson, pp. 117, 118 (1961)) and has the value 7 csc p7r=
T csc 7/q. : ‘

Hence I=pw csc pr=m/q csc w/q.

Substitution of p=1/7 or ¢=m in the above yields the desired result.

. Also solved by Jacques Allard, University of Sherbrooke, Canada; Winifred Asprey, Vassar
College; John A. Burslem, St. Louis University; Len Bertain, St. Mary's College, California; J. D.
Cloud, Manhattan Beach, California; Sidney Glusman, New York, New York; Carl Harris, Poly-
technic Institute of Brooklyn; John E. Hosmer, Jr., Wisconsin State College, La Crosse; Robert F.
Jackson, University of Toledo; Otto J. Karst, Webb Institute of Naval Architecture; Peng Aun Khor,
Queen’s University, Kingston, Ontario, Canada; Robert Lera, St. Mary's College, California; E. L.
Magnuson, HRB-Singer, Inc., State College, Pennsylvania; Robert Martel, St. Mary's College, Cali-
fornia; Henry J. Ricardo, Yeshiva University, New York; Stdney Spital, California State Polytechnic
College; William Squire, West Virginia University; M. N. Srikanta Swanny, University of Sas-
katchewan, Regina, Canada; Ralph N. Vawter, St. Mary's College, California; Dale Woods, Northeast
Missouri State Teachers College; and the proposer.
References to this problem were found in a number of well-known books.
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Inscribed Triangles

560. [September, 1964] Proposed by Morton Hackman, University of Washing-
ton.

Show that the perimeter of a triangle inscribed in a circle is at least twice
the diameter of the circle if the triangle contains the center of the circle.

1. Solution by John Selfridge, University of Washington.

Let the triangle have vertices 4, B, C. At least two sides of the triangle, say
AB and AC, must subtend arcs =90°. Let 4D be the diameter through 4. Be-
cause the center of the circle must lie in the triangle, B must lie on one side of
AD, and C must lie on the other side. Let BC intersect 4D at P, and let BQ be
the perpendicular dropped from B to AD. Then AB=AQ because it is the
hypotenuse of a right triangle. For the same reason BP = BQ. But BQ= QD be-
cause the triangle BQD is similar to the triangle A BD, and the arc subtended
by AB, being =90° is at least as large as the arc subtended by BD. Then
AB+4+BPz=zAQ+QD=AD. In similar fashion, AC+CP =AD, so that AB+AC
+BC=2A4D.

II. Solution by Dermott A. Breault, Sylvania ARL, Waltham, Massachusetts.

Inscribe a triangle with sides 4, B and C in a unit circle, and label the central
angles subtended by them a, b, and ¢ respectively. If the center falls in or on the
triangle, we will have:

)] a+b+c
2) a+ b= 180°

360°,

Three applications of the law of cosines gives:

3) a*+ 024+ c2=2((1 —cosa) + (1 — cosd) + (1 — cosc)),

from which, with the aid of (1), we arrive at

“4) ae4+bd+c=2(+/1—cosa)+ (1 — cosd) + +/(1 — cos (a + b))).

Keeping (2) in mind, we find that (4) takes on a maximum value of 34/3
when ¢ =b=120° and a minimum value of 4 for ¢ =0°, b=180°.

Also solved by Merrill Barneby, University of North Dakota; John A. Burslem, St. Louis Univer-
sity; Thomas V. Eynden, Kodiak, Alaska; Philip Fung, Fenn College, Okio; Michael Goldberg,
Washington, D. C.; Neal Harrell, Menlo-Atherton High School, Atherton, California; Larry Hoehn,
Perryville, Missouri; Robert F. Jackson, University of Toledo; Richard A. Jacobson, South Dakota
State University; Joseph D. E. Konhauser, HRB-Singer, Inc., State College, Pennsylvania; Prasert
Na Nagara, Bangkok, Thailand; Stanley Rabinowits, Far Rockaway, New York; Lawrence A. Ringen-
berg, Eastern Illinois University; Sidney Spital, California State Polytechnic College; J. S. Vigder,
Defence Research Board of Canada; and Dale Woods, Northeast Missouri State Teachers College.
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A Fibonacci Property

561. [September, 1964] Proposed by Benjamin B. Sharpe, State University of
New York at Buffalo.

Prove that a?+4b%=c¢?, (e <b<c) is impossible if a, b, and ¢ are Fibonacci
numbers.
1. Solution by Sidney Spital, California State Polytechnic College.

The Fibonacci sequence is generated by the recurrence relation o,=0,
+0,—s. We square this equation and partially transpose:

2 2 2
Op — Op—1 = Op—2 + 20'n—20'n—1~

But since the sequence is a monotone increasing one,

.. 2 2 2
200—32 > 0p—g + On-3 = 0u—1, giving o, — Gn_1 > Op-1.

Therefore,

2 2 2 2 2
Opn = 0k = Op — On—1> On

v

and

on> ot om for Bm=1,2-,n—1.
This precludes the possibility of three of them satisfying c?=a2+b2%, a <b<c.
I1. Solution by Clifton T. Whyburn, Louisiana State University.

Suppose a?+b2=c?, a £b<c has a solution in Fibonacci numbers #,, s, %,.

Then %o <ug=u,— and 245_, =42, /2 2 u,/uy_1. This, however, cannot be true

for any v>1, as is shown by induction: u;/%; =1; assume

u Up—
L sv2, >
Up—1 Ux—2
U Up—2 1 ey e
Then +/2 = =14 > 1 4+ —— which is not true.
Up—1 Ur—1 \/ 2

Also solved by Joseph Arkin, Spring Valley, New York; Merrill Barneby, University of North
Dakota; Leon Bankoff, Los Angeles, California; Dermoit A. Breault, Sylvania ARL, Waltham,
Massachusetts; John L. Brown, Jr., Pennsylvania State University; L. Carlitz, Duke University;
Darel W. Hardy, Seattle University; Robert F. Jackson, University of Toledo; Richard A. Jacobson,
South Dakota State University; Sidney Kravitz, Dover, New Jersey; E. L. Magnuson, HRB-Singer,
Inc., State College, Pennsylvania; Burton Navid and Emanuel Vegh (jointly), U. S. Naval Research
Laboratory, Washington, D. C.; Stanley Rabinowitz, Far Rockaway, New York; David L. Silverman,
Beverly Hills, California; Lurline S. Squire, Morgantown, West Virginia; C. W. Trigg, San Diego,
California; G. Joseph Wimbisk, Jr., University of Oklahoma; and the proposer. J. D. E. Konhauser
found this problem as E1028 [March, 1953], Amer. Math. Monthly, 60 (1953) 191.

Carlitz pointed out that this result is proved in A4 Note on Fibonacci Numbers, The Fibonacci
Quart. 2 (1964) 15-28, Theorem 5. The result holds for both the Fibonacci and Lucas numbers.
More generally (Theorem 6) it is proved that the equations
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U+ 1 = U O <m=n),
Un + n = 0 =m = ),
are impossible for all r=2, where
=0, u1 =1, o1 = thn + thn_1 (nz1),
=2 nn=1, Unt1 = Un + Vna1 (nz=1).

Angles in a Hexagon
563. [September, 1964] Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey.

Let A, B’, A’, B be four consecutive vertices of a regular hexagon. If M is
an arbitrary point of the circumcircle (in particular on arc A’B’) and MA, MB
intersect BB’ and A4’ in the points E and F respectively, then prove that:

(a) ¥ MEF = 3XMAF
(b) ¥ MFE = 3¥XMBE.

Solution by Richard A. Jacobson, South Dakota State University.

Let AB'=x and XMAF=a. Noting that XAB'B=<XAA'B=<XAMB
=90°, we have from triangles AMB, AB'E and AA’'B that A M =2x cos (30+a),
BM=2x sin (30+4a), AE=x/cos(30—a) and BF=x/cos a. Thus in triangle
EMF we find that

2 $in(30 + a) —
MF  BM — BF #sin(30 +a) =

ME AM — AE
2% cos(30 + @) —

tan(XMEF) =

cos(30 — a)
2 sin(30 + a) cos(a) — 1
cos a
2 cos(30 + @) cos(30 — a) — 1
cos(30 — a)

25in(30 4+ 2a¢) — 1 cos(30 — a)
- cos(a) 2 cos(2a) — 1

2 5in(30 + 2a) cos(30 — a) — cos(30 — a)
- 2 cos(2a) cos(a) — cos(a)

sin(60 + @) + sin(3a¢) — cos(30 — a)
- cos(3a) + cos(a) — cos(a)

sin(3a)
- cos(3a)

Since ¢ £30°, we have X MEF=3{MAF. Part (b) is done similarly.

= tan(3aq).
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Also solved by Leon Bankoff; Los Angeles, California; J. D. E. Konhauser, HRB-Singer, State
College, Pennsylvania; Stanley Rabinowitz, Far Rockaway, New York; Sidney Spital, California
State Polytechnic College; and the proposer.

Gamma Function

564. [September, 1964] Proposed by Murray R. Spiegel, Rensselaer Polytechnic
Institute.

Show that

do 2:4-6-8-10-12-14-16 -
o V{1 - 1/251n20) 5:-5-9-9-13-13-17-17 -

Solution by Leonard Carlitz, Duke University.

f’lz do _ do — V2 0
o V(1 —1/2sin28) Jy (1 — 1/2cosz6) o /(1 + sin?9)

2
= /2 f T _x4) ‘: t‘3/4(1—t)"1"dt—\/T-B(1/4 1/2)
_ V2 T(U/HT(1/2) V2 T(A/HT(1/2) 1 i
ST Trem T4 . At
sin1
4
On the other hand,
i 2:4.6-8-10-12 - - - (4n — 2)(4n)
nmw 1.5-5-9-9-13-13 - - - (4n + 1)(dn + 1)
_ fI n(n — 1/2) T+ 1/9T(1 + 1/4)
o (n+ U (m+ 1/4) T(1)T(1/2)

(See for example Whittaker and Watson, Modern Analysis, 4th Edition, Page
239.)

I'2(1/4)
16\/7r
so that
/2 do 2.4-6-8-10-12 - - -
fo V(1 —1/2sin?6) 1-5-5-9.9-13-13 - - -

Also solved by J. S. Frame, Michigan State University; Joseph D. E. Konhauser, HRB-Singer,
Inc., State College, Pennsylvania; and the proposer. One incorrect solution was received. G. J. Wimbish,
Jr., University of Oklahoma, pointed out that as stated the product on the right diverges to zero.
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Comment on Q342

Q342. [September, 1964] Comment by Martin S. Erdsneker, Bronx Community
College.

For all integers N>1 we have (N+1)¥> N! or N+1> (N!)V/¥, Multiplying
both sides, NI(N+1)> NI(NDUN or (N4+1)!> (N)¥+DIN, That is

[(N + 1)!]1/(N+1) > (NHUw
which proves that for all N>1

N+1

VIV + 1)1 > VNI

QUICKIES

From time to time this department will publish problems which may be solved by laborious
methods, but which with the proper insight may be disposed of with dispatch. Readers are urged
to submit their favorite problems of this type, together with the elegant solution and the source,
if known.

Q354. Given two points 4 and B inside a circle, at what point on the circum-
ference of the circle does 4 B subtend the greatest angle?

[Submitted by Alan Sutcliffe]
Q355. Simplify the product

G+ DE +)ET 1) G+ ),
[Submitted by C. W. Trigg]

Q356. Give a geometric argument for the nonexistence of positive solutions to
the equation

2 = /(1 + x?).
[Submitted by R. G. Buschman]

Q357. Find the 501st term and the difference between this and the preceding
term of the sequence

[2) 3) 5) 81 12’ tte ]
[Submitted by Myron Tepper]

Q358. In what base is 297 a factor of 792?
[Submitted by D. L. Silverman]
(Answers on page 115)


http://www.jstor.org/page/info/about/policies/terms.jsp

1965] ANSWERS 115

Philosophy of Mathematics: Selected Readings. By Paul Benacerraf and Hilary Putnam,
editors. Prentice-Hall, Englewood Cliffs, N. J., 1964. vii4+536 pp. $8.95.

This extensive collection of essays by philosophers and mathematicians presents
many points of view on the nature of mathematics. There are four parts: Foundations of
Mathematics, The Existence of Mathematical Objects, Mathematical Truth, Wittgen-
stein on Mathematics.

An Introduction to the History of Mathematics, revised edition. By Howard Eves. Holt,
Rinehart, and Winston, New York, 1964, xvi+439 pp. $7.95.

Philosophical Problems of Space and Time. By Adolf Grunbaum. Alfred A. Knopf, New
York, 1964. 450 pp. $10.75.

Applied Calculus. By L. J. Adams. Wiley, New York, 1963. ix+278 pp. $5.95.

Basic Mathematics for General Education. 3rd ed. By Harold C. Trimble, E. W. Hamilton
and Ina Mae Silvey. Prentice-Hall, Englewood Cliffs, N. J., 1963. xi-+332 pp. $6.00.
Revision of the 1955 edition. '

The Japanese Abacus Explained. By Y. Yoshino. Dover, New York, 1963. xiii+ 240 pp.
$1.25.

Republication of the original 1937 edition with a new introduction by Martin
Gardner.

Advanced Abacus: Japanese Theory and Practice. By Takashi Kojima. Charles E, Tuttle,
Rutland, Vermont. 159 pp. $2.25.

A sequel to the author’s The Japanese Abacus: Its Use and Theory.

Fallacies in Mathematics. By E. A. Maxwell. Cambridge University Press, New York,
1963. 95 pp. $.95.

First paperback edition of the 1959 publication.

ANSWERS

A354. The greatest angle is subtended at the point of contact of the smaller
of two circles through A4 and B which touch the given circle internally. The
other points on the same side of AB give smaller angles as they are outside the
touching circle, while the points on the other side give smaller angles because
they are outside the larger touching circle.

A355. Multiply the product by (1/2)(32"—1) or 1 and obtain (1/2)(32***—1) since
(32" —1)(32"+1) = (32'—1), (32'—1)(32'+1) = (32" —1), and so on.
In general, if any base x>1 were used instead of 3, the product would be
n+1

[1/( = D] = 1).
A356. The leg of a right triangle is shorter than the hypotenuse. Consider the
right triangle with legs of length 1 and «x.
A357. Let S(1)=2, S(2)=3, - - -.
Then since S(a) =2+ >.%¢ ¢ and S(a) —S®) = 2 %t 4 for a>b, we have
S(501) =125252 and S(501) —.S(500) =500. :

A358. In any base B, 2(297) <2(300) =600. 600 <792 <800=4(200) <4(297).
Hence 792 =3(297) so that 7B2+9B+42=6B2+427B-+421 or B2—18B—19=0.
Rejecting the negative root leaves B=19.

(Quickies on page 124)
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Five new Wiley books that facilitate
learning and teaching mathematics

PREPARATORY MATHEMATICS FOR ELEMENTARY TEACHERS

By RALPH CROUCH, New Mexico State University; GEORGE BALDWIN, Eastern
New Mexico University; and ROBERT J. WISNER, New Mexico State University. Pro-
vides the present or prospective elementary school teacher with the necessary background
for teaching any of the new mathematics programs. Primary emphasis is on the study of
real numbers, but discussions of mathematical systems, number theory, and geometry are
also included. 1965. Approx. 544 pages. Prob. $8.50.

QUICK CALCULUS

By DANIEL KLEPPNER 4124 NORMAN RAMSEY, both of Harvard University. Teaches
the elementary techniques of differential and integral calculus with a minimum of. wasted
time and effort on the readet’s part. 1965. In Press.

Coming in Spring ’65 . . .

INTRODUCTION TO ABSTRACT ALGEBRA

By ROY DUBISCH, University of Washington. Provides a gradual introduction to the
basic concefts and procedures of abstract algebra. The author presents and develops
postulates for the natural numbers, while alternating between a discussion of familiar
systems and their abstract generalizations. 1965. Approx. 192 pages. Prob. $5.95.

MATHEMATICAL DISCOVERY: On Understanding, Learning,
and Teaching Problem Solving. Volume Il

By GEORGE POLYA, Stanford University. Presents problém solving from the “heuristic”
point of view. The theoretical aim of this book is to study the means and methods of
problem solving. The practical aim is to improve the preparation of teachers of mathe-
matics. 1964, 191 pages. $5.50.

PROGRAMMED INTRODUCTION TO PROBABILITY

By JOHN R. DIXON, Purdue University. Combines both linear and branched program-
ming techniques, in a step-by-step introduction to the concept of probability. The book
presents the rules of Bayesian probability and indicates how the rules can be used to solve
problems. Includes a post-test, exercises, and a final examination. 1964. 401 pages. $3.95.

JOHN WILEY & SONS, Inc.
605 Third Avenue New York, N. Y. 10016



SEVEN MODERN MATHEMATICS TEXTS
from PRENTICE-HALL

Calculus and Analytic Geometry, 2nd Edition, 1965
by BRobert C. Fisher, The Ohio State University and Allen D. Ziebur, State University of
New York at Binghamton. A revision of an accurate, understandable introduction to calculus
and analytic geometry. At the end of the course the student should have a good grasp of
the essential nature of the subject and should be able to express himself in current nota-
tion. Problems have been up-dated and a large number of new and sophisticated ones
have been added. June 1965, approx. 768 pp., $10.95

A New Look at Elementary Mathematics
by Benjamin E. Mitchell and Haskell Cohen, both of Louisiana State University. Designed
to furnish the background necessary to teach modern mathematica. This new text also is
a source of enrichment material. The central theme is the development of the number sys-
tem and its applications. February 1965, 354 pp., $7.95

Fundamental Concepts of Mathematics
by Frank Harmon and Danlel E. Dupree, both of the Northeast Louisiana State College.
This book presents the basic ideas in mathematics to the non-technical student. It follows
closely the recommendations of the Commitiee on the Undergraduate Program in Mathe-
matics for the training of teachers. It develops basic mathematicas as a collection of deduc-
tive systems. 1964, 354 pp., $15.95

Principles of Mathematics
by Paul K. Rees, Louisiana State University, A revision of “Freshman Mathematics” pre-
sents a comprehensive elementary introduction to college mathematics. New chapters on
sets, polar coordinates, analytic geometry, inequalities, and a glimpse of calculus. The
book remains basically traditional but modern terminology is used when appropriate. April
1965, approx. 432 pp., $6.95

Elements of the Theory of Probability
by Emile Borel, outstanding French Mathematician: translated by John Freund, Arizona
State University. A unique introduction to the basic theory of probability covering informally
and clearly many controversial problems connected with probability theory, stresses appli-
cation rather than theory. February 1965, 177 pp., $5.75

Plane Trigonometry, 5th Edition, 1965
by Fred W. Sparks, Professor Emeritus of Texas Technological College and Paul K. Rees.
Louisiana State University. Covers the basic topics of plane trigonometry and includes
definitions and properties of the trigonometric functions, fundamental identities, solution
of right triangles, functions of a composite angle, radian measure, logarithms, oblique
triangles and many others. June 1965, approx. 320 pp., $6.50

Introduction fo Mathematics
by Bruce E. Meserve, University of Vermont and Max A. Sobel, Montclair State College.
An intuitive approach to the basic concepts of modern mathematics emphasizing under-
standing and appreciation of the subject suitable for the undergraduate college student
that has had moderate secondary school training in mathematics, one who is not a mathe-
matics major, but who wishes to acquire a basic understanding of the nature of mathe-
matics. 1964, 290 pp., $5.95.

for approval copies, write: Box 903

PRENTICE-HALL, INC.. Englewood Cliffs, N.J.
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